摘要
基于内容的自适应三角形网格模型是描述图像的一种有效方法,本文将网格模型与最小交叉熵算法相结合,并加入先验解剖信息,用于PET图像重建.在本文提出的新算法中,先将投影数据用滤波反投影方法(FBP)生成参考图像,再对参考图像提取网格节点,用加入先验解剖信息的最小交叉熵算法对网格节点灰度值进行迭代计算,最后利用迭代后的网格节点灰度值对象素点进行插值得到重建后的图像.在仿真实验中,将该算法与最大似然方法(MLEM)等算法作比较,并分析了参数对重建结果的影响.
Content-adaptive mesh modeling is an efficient method for image representation. In this paper, the minimum crossentropy algorithm using prior anatomical information, combined with mesh model, was applied to the reconstruction of PET images. In the proposed algorithm, the nodes of mesh model were extracted from a reference image obtained with FBP method; then, the val- ues of the nodes were computed through the minimum cross-entropy algorithm with prior anatomical information. Finally, the whole image was reconstructed by interpolation from the values of the nodes. The performance of the proposed method was tested and compared with other algorithms using a set of simulated data. The effect of the parameters on the result was also studied.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2006年第11期1999-2003,共5页
Acta Electronica Sinica
基金
科学技术部基础研究重大项目(No.2003CB716102)
教育部新世纪优秀人才支持计划(No.NCET-04-0477)
关键词
基于内容的自适应网格模型
最小交叉熵算法
PET图像重建
content-adaptive mesh model
minimum cross-entropy algorithm
reconstruction of PET (positron emission tomography) images