期刊文献+

维数差异对模糊积分融合多FasART网络影响的研究

The Influences of Different Feature Dimension on Multi-FasART Networks Fusion Based on Fuzzy Integral
下载PDF
导出
摘要 基于软决策的并行分布式融合系统能融合不同类型的特征,且最终决策结果与前期决策器输出的数值大小相关.当不同类型矢量的维数不等时,维数差异是否对最终融合决策有影响对设计融合算法和分类器的选择具有重要意义.本文分析了维数差异对模糊积分融合多FasART网络算法的影响原因,提出了解决办法,用遥感图像的光谱和纹理特征进行了融合实验,结果表明维数差异对该算法有影响.模糊积分融合多FasART网络是一种典型的基于软决策的并行分布式融合决策系统的算法,因此,基于上述融合系统的算法存在维数差异问题. The parallel-distributed fusion system based on soft-decision can fuse the different feature class, and the fusion result is correlatiw; to these output of classifiers, When the vector dimension to different classifiers isn't equal, whether the dimension difference affects the last result, it's important to design algorithm and select classifier in the fusion system, To the system of fuzzy integral fusion multi-FasART networks, this paper analyses the causation of dimension difference influence, presents a way to settle the problem. Experimenting with spectrum and texture feature of remote sensing image, the results show that the dimension difference has influences on the fusion algorithm. The fuzzy integral fuse multi-FasART networks that is a typical algorithm of paralleldistributed fusion system based on soft-decision, so algorithms based on this fusion system have the problem of dimension difference.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第11期2125-2128,共4页 Acta Electronica Sinica
基金 国家自然科学基金(No.40371027) 湖南省自然科学基金(No.04JJ30046)
关键词 模糊积分 FasART网络 并行分布式融合系统 维数差异 fuzzy integral FasART networks parallel-distributed fusion system dimension difference
  • 相关文献

参考文献11

  • 1Ludmila I K,James C B,Robert P W D.Decision templates for multiple classifier fusion:an experimental comparison[J].Pattern Recognition,2001,34(2):299-314.
  • 2Antanas V,Arunas L,Kerstin M,et al.Soft combination of neural classifiers:a comparative study[J].Pattern Recognition Letters,1999,20(4):429-444.
  • 3Ludmila I K.Switching between selection and fusion in combing classifiers:An experiment[J].IEEE Transaction on systems,men,and cybernetics-part B:cybernetics,2002,32(2):146-156.
  • 4Kumar A S,Basu S K,Majumdar K L.Robust classification of multi-spectral data using multiple neural networks and fuzzy integral[J].IEEE Trans Geosci Remote Sensing,1997,35(3):787-790.
  • 5Kim K J,Cho S B.Fuzzy integration of structure adaptive SOMs for web content mining[J].Fuzzy Sets and Systems,2004,148(1):43-60.
  • 6林剑,鲍光淑,王润生,王欣.基于模糊密度分解的遥感图像光谱和纹理信息的融合[J].电子学报,2004,32(12):2028-2030. 被引量:10
  • 7Izquierdo J M C,Dimitriadis Y A.Learning from noisy information in FasART and FasBack Neuro-Fuzzy systems.neural networks[J].Neural Netowork,2001,14(5):407-425.
  • 8Gómez Sánchez E,Gago González J A,et al.Experimental study of a novel neuro-fuzzy system for on-line handwritten UNIPEN digit recognition[J].Pattern Recognition Letters,1998,19(3-4):357-364.
  • 9付琨.高分辨率单视单极化SAR图像地物分类方法研究[D].长沙:国防科技大学信息与通信工程系,1999.
  • 10Figue J,Grabisch M,Charbonnel M P.A method for still image interpretation relying on a multi-algorithms fusion scheme:Application to human face characterization[J].Fuzzy Sets and Systems,1999,10(3):317-337.

二级参考文献7

  • 1Melgani F,Serpico S B.A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images[J].Pattern Recognition Letters,2002,23(9):1053-1061.
  • 2Lin C T,Lee Y C,Pu P H.Satellite sensor image classification using cascaded architecture of neural fuzzy network[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(2):1033-1043.
  • 3Jolly M P D,Gupta A.Color and texture fusion:application to aerial image segmentation and GIS updating[J].Image and Vision Computing,2000,18(10):823-832.
  • 4Verikas A,Lipnickas A,Malmqvist K,et al.Soft combination of neural classifiers:A comparative study[J].Pattern Recognition Letters,1999,20(4):429-444.
  • 5Auephanwiriyakul S,Keller J M,Gader P D.Generalized choquet fuzzy integral fusion[J].Information Fusion,2002,3(2):69-85.
  • 6Lee Y G,Lee J H,Hsueh Y C.Texture classification using uncertainty texture spectrum[J].Neurocomputing.1998,20(1-3):115-122.
  • 7Izquierdo J M C,Dimitriadis Y A.Learning from noisy information in FasART and FasBack neuro-fuzzy systems[J].Neural Networks,2001,14(5):407-425.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部