期刊文献+

Superconvergence of a Nonconforming Finite Element Approximation to Viscoelasticity Type Equations on Anisotropic Meshes 被引量:21

Superconvergence of a Nonconforming Finite Element Approximation to Viscoelasticity Type Equations on Anisotropic Meshes
下载PDF
导出
摘要 The main aim of this paper is to study the approximation to viscoelasticity type equations with a Crouzeix-Raviart type nonconforming finite element on the anisotropic meshes. The superclose property of the exact solution and the optimal error estimate of its derivative with respect to time are derived by using some novel techniques. Moreover, employing a postprocessing technique, the global superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself is studied. The main aim of this paper is to study the approximation to viscoelasticity type equations with a Crouzeix-Raviart type nonconforming finite element on the anisotropic meshes, The superclose property of the exact solution and the optimal error estimate of its derivative with respect to time are derived by using some novel techniques. Moreover, employing a postprocessing technique, the global superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself is studied,
基金 This research is supported by the NSF of China (10371113 10471133),SF of Henan ProvinceSF of Education Committee of Henan Province (2006110011)
关键词 黏弹性型函数 Crouzeix-Raviart型元素 后加工 各向异性网目 Viscoelasticity type equations Crouzeix-Raviart type element superclose and supercon-vergence properties postprocessing anisotropic meshes
  • 相关文献

参考文献3

二级参考文献19

  • 1石东洋,毛士鹏,陈绍春.问题变分不等式的一类各向异性Crouzeix-Raviart型有限元逼近[J].计算数学,2005,27(1):45-54. 被引量:11
  • 2石东洋,陈绍春.一类改进的Wilson任意四边形单元[J].高等学校计算数学学报,1994,16(2):161-167. 被引量:56
  • 3Ciarlet P G.The Finite Element Method for Ellptic Problem[M].North-Holland,Amsterdam,1978
  • 4Falk R.Error estimate for the approximation of a class of varitional inequalities[J].Mathematics of Computation,1974,28:963-971
  • 5Brezzi F,Hager W W,Raviart P A.Error estimates for the finite elment solution of varitional inequalities[J].Numerische Mathematik,1977,(28):431-443
  • 6Brezzi F,Sacchi GF.A finite element approximation of varitional inequality related to hydraulics[J].Calcolo,1976,13(3):259-273
  • 7Zienisek A,Vanmaele M.The interpolation theorem for narraw quadrilateral isotropic metric finite elements[J].Numerische Mathematik,1995,72:123-141
  • 8Apel Th,Dobrowolski M.Anisotropic interpolation with applications to the finite element method[J].Computing,1992,47(3):277-293
  • 9Apel Th.Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements[J].Computing,1998,60:157-174
  • 10Apel Th.Anisotropic Finite Elements:Local Estimates and Applications[M].B.G.Teubner Stuttgart,Leipzig,1999

共引文献201

同被引文献109

引证文献21

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部