期刊文献+

四苯基卟啉锌/TiO_2纳米复合材料的原位合成及可见光光催化 被引量:8

Meso-Tetraphenylporphyrinatozinc/TiO_2 Nanocompound Synthesized by In-situ Method and Photocatalysis under Visible-Light Irradiation
下载PDF
导出
摘要 利用溶胶-凝胶法,经400℃(4 h)烧结后,原位合成不同摩尔比的5,10,15,20-四苯基卟啉锌(ZnTPP)/TiO2纳米复合材料,通过XRD,FTIR,UV-Vis,荧光光谱等表征分析,确认复合材料中TiO2为锐钛矿相,且ZnTPP在该过程中原位生成。经150 min可见光辐照,摩尔比为1∶100的ZnTPP/TiO2复合材料能使罗丹明B溶液降解率达到92%。其光催化敏化的机理为,通过ZnTPP与TiO2之间的Zn—O键,使光生载流子形成有效的分离,提高了光催化性能。 The meso-tetraphenylporphyrinatozinc/titanium dioxide (ZnTPP/TiO2) nanocompounds with different molar ratios were synthesized by sol-gel method at 400℃, 4h. The nanocompounds were characterized by XRD, UV-Vis, FTIR and Fluorescence methods. Anatase for TiO2 in the nanocompounds was defined, and ZnTPP was also obtained during in-situ process. Photocatalystic activities of them influenced by the proportion between ZnTPP and TiO2 were discussed under visible light. The results show that a nanocompound (ZnTPP : TiO2 = 1 : 100 mol%) has the best photocatalystic activity, and the degradation of Rhodanmine B is up to 92% after 150 minutes under visible light irradiation. The sensitization mechanism is that the photogener ated charge carriers are separated by Zn-O bond between ZnTPP and TiO2.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2006年第11期2061-2064,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金(50472001) 福建省教育厅(JB03008)项目资助
关键词 ZnTPP/TiO2 原位合成法 纳米复合材料 可见光光催化 ZnTPP/TiO2 In-situ method Nanoeompound Photocatalysis under visible lighl
  • 相关文献

参考文献15

  • 1唐培松,王民权,王智宇,洪樟连.半导体TiO_2光催化剂及其有机光敏化研究进展[J].材料导报,2003,17(10):33-36. 被引量:26
  • 2姚秉华,王理明,余晓皎,杨国农,赵高扬,郑怀礼.RuO_2TiO_2复合光催化剂的制备及性能研究[J].光谱学与光谱分析,2005,25(6):934-937. 被引量:16
  • 3Kroeze J E, Saveije T J, Warman J M. J. Photochem. Photobiol. A, 2002, 148: 49.
  • 4Nogueira A F, Furtado L F O, Formiga A L B, et al. J. Inorg. Chem. , 2004, 43(2): 396.
  • 5Odobel F, Blart E, Lagree M, et al. J. Mater. Chem. , 2003, 13:502.
  • 6Boschloo G K, Goossens A. J. Phys. Chem. , 1996, 100: 19489.
  • 7Kalyanasundaram K, Vlachopoulos N, Krishnan V, et al. J. Phys. Chem. , 1987, 91: 2342.
  • 8Koehorst R B M, Boschloo G K, Savenije T J, et al. J. Phys. Chem. B, 2000, 104: 2371.
  • 9Mele G, Sole R D, Vasapollo G. J. Phys. Chem. B, 2005, 109: 12347.
  • 10Molinari A, Amadelli R, Amolini L, et al. J. Mol. Catal. A, 2000, 158: 521.

二级参考文献64

  • 1余锡宾,王华林,訾振军.无机-有机杂化材料的进展[J].材料导报,1997,11(2):49-52. 被引量:13
  • 2张世超,贺俊,邱学良,马昌文.A3-3碳/碳复合材料的氧化动力学研究[J].复合材料学报,1997,14(1):65-69. 被引量:3
  • 3Akira Fujishima, Keniehi Honda. Nature, 1972,238 : 37.
  • 4Amy L Linsebigler, Lu Guanquan, John T Yatess. Chem Rev, 1995,95 : 735.
  • 5Frank S N. JACS. 1977,99 : 4667.
  • 6Alfano O M, Bahnemann D, Cassano A E,et al. Catalysis Today,2000,58:199.
  • 7Hoffmann M R, Martin S T, Choi Wonyong, et al. Chem Rev,1995,95:69.
  • 8Wang Chong-Mou,Heller A. J Am Chem Soc, 1992, 114:523O.
  • 9Choi W,Termit A,Hoffmann M R, J Phys Chem, 1994,98 :13669.
  • 10Nasr C, Liu D, Hotehandani S,et al. J Phys Chem, 1996,100:11054.

共引文献133

同被引文献83

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部