期刊文献+

常压下低温等离子体光辐射特性测量 被引量:1

Experiment on Optical Radiation Characteristic of Low Temperature Plasma at Atmospheric Pressure
下载PDF
导出
摘要 采用常压空气辉光放电(APGD)技术在自行设计的电极板表面产生出一薄层低温等离子体,并利用光谱诊断光学系统对所产生的等离子体进行光辐射特性实验测量;实验获取了几种电极板在几个不同加载功率下的辐射光谱,并对光谱的辐射强度进行平均化处理分析。分析结果表明此沿面APGD的光辐射强度与加载功率之间存在线性增加的关系,且随电极板静态电容的增加而增强。该方法可以为控制APGD等离子体的产生量提供一种简便可行的途径。 The experiment on the optical radiation performance of a low temperature plasma due to atmospheric pressure glow discharge (APGD) in air was carried out in the present paper. A set of APGD devices were created successful.ly and a thin layer of plasma can be produced on the planar surface of designed electrode plate. The measurement was carried out on the optical radiation characteristic of the plasma with a grating spectrograph system. The investigation was made to several different electrode plates. The radiation spectra of several electrode plates with different power loaded were acquired. The data obtained show that the APGD optical radiation intensity grows linearly with the applied power, and increases with the static capacitance of the electrode plate. The study proves that it is feasible to control APGD plasma quantitatively and effectively by using the obtained relationship.
作者 任庆磊 林麒
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2006年第11期2116-2119,共4页 Spectroscopy and Spectral Analysis
基金 福建省自然科学基金(A0410001)资助项目
关键词 低温等离子体 常压空气辉光放电 光辐射特性 光谱测量 Low temperature plasma APGD Optical radiation eharacteristic Spectra measurement
  • 相关文献

参考文献3

二级参考文献10

  • 1[2]Brauer I, Punset C, Boeuf J P. J. Appl. Phys., 1999, 85: 7569.
  • 2[3]Muller I, Punset C et al. IEEE Trans. on Plasma Science, 1999, 27: 20.
  • 3[4]Falkenstein Z, Coogan J J. J. Phys. D: Appl. Phys., 1997, 30: 817.
  • 4[5]Ammelt E, Schweng D et al. Phys. Lett. A, 1993, 179: 348.
  • 5[6]Eliasson B, Kogelschatz U. IEEE Trans. on Plasma Science, 1991, 19: 309.
  • 6[7]Eliasson B, Hirth M et al. J. Phys. D: Appl. Phys., 1987, 20: 1421.
  • 7[14]Campbell H D et al. J. Quant. Spectrosc. Radiat. Transfer., 1969, 9: 461.
  • 8[16]Meiners H J. Quant. Spectrosc. Radiat. Transfer., 1969, 9: 1496, 1502.
  • 9[17]Murphy P. Journal of the Optical Society of America, 1968, 58(9): 1200.
  • 10凌一鸣.无声放电等离子体及其应用[J].电子器件,1997,20(3):8-19. 被引量:12

共引文献24

同被引文献26

  • 1王卫国,徐勇,刘忠伟,朱爱民,王文春.介质阻挡放电氢等离子体中氢原子浓度的光谱诊断[J].光谱学与光谱分析,2006,26(9):1589-1593. 被引量:7
  • 2Kogelschatz U. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1.
  • 3Choi J H, Lee E S, Baik H K, et al. Plasma Sources Science and Technology, 2005, 14(2): 363.
  • 4Alexandrov S E, Hitchman M L. Chemical Vapor Deposition, 2005, 11 (11-12):457.
  • 5Borcia G, Anderson C A, Brown N M D. Plasma Sources Science and Technology, 2005, 14(2): 259.
  • 6Wagner H E, Brandenburg R, Kozlov K V, et al. Vacuum, 2003, 71(3 Spec. ):417.
  • 7Bogaerts A, Neyts E, Gijbels R, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(4): 609.
  • 8Xi-Ming Z, Yi Kang P. Physics of Plasmas, 2005, 12(10): 103501.
  • 9Boudam M K. Saoudi B, Moisan M, et al. Journal of Physics D: Applied Physics, 2007, 40(6): 1694.
  • 10Buchohz A. Skinner W R. Abreu V J, et al. Planetary and Space Science, 1986, 34(11) : 1031.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部