期刊文献+

基于提升小波构造在图像去噪的应用研究 被引量:2

Application of Wavelet Transform in Image De-noise
下载PDF
导出
摘要 在图像处理中,基于离散小波变换的提升算法比传统的卷积算法运算简单、实时性好、易于实现,因而被新的图像去噪所采用。小波提升算法是一种新的双正交小波构造方法,通过预测算子,确定高频信息,并初步确定低频信息,然后通过更新算子,对初步确定的低频信息进行修正,从而确定低频信息。笔者以该提升方法为基础,通过对初始D4双正交滤波器组进行提升和对偶提升,来获得不同的提升算子和对偶提升算子,从而构造出具有理想特性的新小波。通过实验数据和分析表明:笔者提出的算法和软阈值法结合比其他小波更能有效地取出图像噪声。 In image processing, the lifting scheme based on discrete wavelet transform is simpler in operation than the traditional convolution algorithm. For its good real - time characteristics and easy realization, it has been adopted by new image de - noise. The lifting scheme and realization algorithms of D4 wavelets in image de - noise are introduced. This method is based on lifting scheme. The initial set of finite biorthogonal filters is followed by lifting and dual lifting, and different lifting operator and dual lifting operator are obtained to construct new wavelet with particular properties. The experimental results and data analysis show that it is effective for the lifting scheme with time soft thresholding algorithm in de -noise process, and it is better than other wavelet methods.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2006年第11期13-15,19,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 北京大学视觉与听觉信息处理国家实验室基金资助项目(2003005)
关键词 小波变换 提升方案 软阈值法 图像去噪 wavelet transform lifting scheme thresholding algorithm image de - noise
  • 相关文献

参考文献6

  • 1SWELDENS W. The lifting scheme : a custom - design construction of biorthogonal wavelets [ J ]. Appl Cornput Harmon Anal, 1996,3. (2) : 186 - 200
  • 2DONOHO D L, JOHNSTONE I M, KERKYACHARI- AN G. Wavelet shrinkage: asymptopia[ J]. J. of Loyal Statist Soc. Ser. B, 1995,57 (2) :301 - 369.
  • 3COIFMAN R R, DONOHO D L. Translation- invafiant de - noising. Antoniadis A, Oppenhelm G, ed, Lecture notes in statistics : wavelet and statistics [ M ]. New-York: Springer Verlag, 1995. 125 - 150
  • 4王志武,丁国清,颜国正,林良明.自适应提升小波变换与信号去噪[J].计算机工程与应用,2002,38(2):28-29. 被引量:8
  • 5成礼智,王红霞,罗永.小波的理论与运用[M].北京:科学出版社,2004.
  • 6KUZUME K,NIIJIMA K. Wavelets with convolution - type Drthogonality conditions [ J ]. IEEE Trans. Signal Processing, 1999,47 (2) :408 - 412.

二级参考文献6

  • 1[1]Sweldens W.The lifting scheme:A custom-design construction of biothogonal wavelets[J].Journal of Applied and Comput.Harmonic Analysis, 1996;3(2): 186~200
  • 2[2]Swelden W.The lifting scheme:A construction of second generation wavelet[J].SIAM J.Math.Anal., 1998 ;29:511-546
  • 3[3]Claypoole R L,Baraniukm R G,Nowark R D.Adaptive wavelet transform via lifting scheme[C].Proc.IEEE Conf. On Acoustics,Speech and Signal Processing,Phoenix,1999
  • 4[4]Stepien J,Zielinski T,Rumian R.Image Denoising for adaptive lifting scheme[C].Proc. European Signal Processing Conference EUSIPCO2000, Tampere, Finland, 2000
  • 5[5]Ho W J,Chang W T.Adaptive predictor based on maximally flat halfband filter in lifting scheme[J].IEEE Transactions on Signal Processing, 1999; 47 ( 11 ): 2965-2977
  • 6[6]Donoho D L. De-noising by soft thresholding[J].IEEE Transactions on Information Theory, 1995;41 (3) :613-627

共引文献7

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部