摘要
针对超高斯与亚高斯混合信源分离算法上存在的不足,该文提出一种峭度依赖的参数自适应盲分离算法。该算法用加权双高斯模型估计超高斯与亚高斯信源分布,在自然梯度框架下,依据峭度实现模型参数自适应。通过使用混合图像对其进行验证,实验表明该算法不仅可以有效实现超高斯与亚高斯混合信源的分离,而且比已有算法具有更好的分离和收敛性能。
To overcome some shortcomings of existing algorithms which separate the mixture of super- and sub-gaussian sources, a parameter kurtosis-dependent flexible Blind Source Separation (BBS) algorithm is proposed. A weighed double Gaussian model is proposed to estimate super-Gaussian and sub-Gaussian probability density. In the framework of natural gradient, model parameter is calculated online by kurtosis. Applied to images mixing, experiment shows the proposed algorithm can successfully separate the mixture of super- and sub-gaussian images. Meanwhile experiment also shows that the proposed algorithm has better performance and convergence than existing algorithms.
出处
《电子与信息学报》
EI
CSCD
北大核心
2006年第11期2033-2036,共4页
Journal of Electronics & Information Technology
基金
交通部项目(2005329225060)基金资助
关键词
信号处理
盲分离
加权
双高斯
超高斯
亚高斯
Signal processing, Blind Source Separation, Weighed, Double Gauss, Super-Gauss, Sub-Gauss