期刊文献+

一种峭度依赖的参数自适应盲分离算法 被引量:1

A Parameter Kurtosis-Dependent Flexible BSS Algorithm
下载PDF
导出
摘要 针对超高斯与亚高斯混合信源分离算法上存在的不足,该文提出一种峭度依赖的参数自适应盲分离算法。该算法用加权双高斯模型估计超高斯与亚高斯信源分布,在自然梯度框架下,依据峭度实现模型参数自适应。通过使用混合图像对其进行验证,实验表明该算法不仅可以有效实现超高斯与亚高斯混合信源的分离,而且比已有算法具有更好的分离和收敛性能。 To overcome some shortcomings of existing algorithms which separate the mixture of super- and sub-gaussian sources, a parameter kurtosis-dependent flexible Blind Source Separation (BBS) algorithm is proposed. A weighed double Gaussian model is proposed to estimate super-Gaussian and sub-Gaussian probability density. In the framework of natural gradient, model parameter is calculated online by kurtosis. Applied to images mixing, experiment shows the proposed algorithm can successfully separate the mixture of super- and sub-gaussian images. Meanwhile experiment also shows that the proposed algorithm has better performance and convergence than existing algorithms.
出处 《电子与信息学报》 EI CSCD 北大核心 2006年第11期2033-2036,共4页 Journal of Electronics & Information Technology
基金 交通部项目(2005329225060)基金资助
关键词 信号处理 盲分离 加权 双高斯 超高斯 亚高斯 Signal processing, Blind Source Separation, Weighed, Double Gauss, Super-Gauss, Sub-Gauss
  • 相关文献

参考文献7

  • 1Amari S J.Natural gradient works efficiently in Learning.Neural Computation,1998,10(2):251-276.
  • 2Cardoso J F.Blind signal separation:Statistical principles.Proc.IEEE,1998,86(10):2009-2025.
  • 3Boscolo R,Vwani H P.Independent component analysis based on nonparametric density estimation.IEEE Trans.on Neural Networks,2004,15(1):55-65.
  • 4Vlassis N,Motomura Y.Efficient source adaptivity in independent component analysis.IEEE Trans.on Neural Networks,2001,12(3):559-565.
  • 5Lee T W,Girolami M,Sejnowski T J.Independent component analysis using an extended informax algorithm for mixed sub-gaussian and super-gaussian sources.Neural Computation,1999,11(2):409-433.
  • 6Choi S,Cichocki A,Amari S.Flexible independent component analysis.IEEE Workshop on Neural Networks for Signal Processing,Cambridge,UK,1998:83-92.
  • 7Hyvarinen A,Karhunen J,Oja E.Independent Component Analysis.New York:John Wiley,2001:203-208.

同被引文献10

  • 1田源,程义民,王以孝.一种新的数据隐藏方法[J].电子学报,2004,32(9):1444-1447. 被引量:24
  • 2程义民,钱振兴,王以孝,田源.基于数位信息的信息隐藏方法[J].电子与信息学报,2005,27(8):1304-1309. 被引量:15
  • 3詹双环,张鸿宾.基于小波分解和方差分析的图像信息隐藏盲检测[J].电子与信息学报,2007,29(6):1460-1463. 被引量:4
  • 4Dumitrescu S and Wu Xiaolin. A new framework of LSB steganalysis of digital media [J]. IEEE Trans. on Signal Processing, 2005, 53(10): 3936-3947.
  • 5Ker A D. Derivation of error distribution in least squares steganalysis [J]. IEEE Trans. on Information Forensics and Security, 2007, 2(2): 140-148.
  • 6Dumitrescu S, Wu Xiallin, and Wang Zhe. Detection of LSB steganography via sample pair analysis [J]. IEEE Trans. on Signal Processing, 2003, 51(7): 1995-2007.
  • 7Yu Xiao-yi, Tan Tie-niu, and Wang Yun-hong. Extended optimization method of LSB steganalysis [C]. IEEE International Conference on Image Processing 2005. Genova, Italy, 2005(11): 1102-1105.
  • 8Ker A D. Steganalysis of embedding in two least-significant bits [J]. IEEE Trans. on Information and Security, 2007, 2(1): 46-54.
  • 9Huang Hesu and Kyriakakis C. Blind dereverberation of audio signals using a modified constant modulus algorithm [C]. 121st Audio Engineering Society. San Francisco, CA, US, 2006: 6974-6977.
  • 10Johnson M K, Lyu S, and Farid H. Steganalysis of recorded speech [C]. SHE Symposium on Electronic Imaging. San Jose, CA, US, 2005: 664-672.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部