期刊文献+

Redesign of a conformal boundary recovery algorithm for 3D Delaunay triangulation 被引量:9

Redesign of a conformal boundary recovery algorithm for 3D Delaunay triangulation
下载PDF
导出
摘要 Boundary recovery is one of the main obstacles in applying the Delaunay criterion to mesh generation. A stan- dard resolution is to add Steiner points directly at the intersection positions between missing boundaries and triangulations. We redesign the algorithm with the aid of some new concepts, data structures and operations, which make its implementation routine. Furthermore, all possible intersection cases and their solutions are presented, some of which are seldom discussed in the litera- ture. Finally, numerical results are presented to evaluate the performance of the new algorithm. Boundary recovery is one of the main obstacles in applying the Delaunay criterion to mesh generation. A standard resolution is to add Steiner points directly at the intersection positions between missing boundaries and triangulations. We redesign the algorithm with the aid of some new concepts, data structures and operations, which make its implementation routine Furthermore, all possible intersection cases and their solutions are presented, some of which are seldom discussed in the literature. Finally, numerical results are presented to evaluate the performance of the new algorithm.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第12期2031-2042,共12页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project (No. 60225009) supported by the National Natural ScienceFoundation of China through the National Science Fund for Distin-guished Young Scholars
关键词 Boundary recovery Delaunay triangulation Mesh generation Data structure 边界回收 数据结构 网目代 标准分辨率
  • 相关文献

参考文献1

二级参考文献26

  • 1闵卫东,唐泽圣.二维任意域内点集的Delaunay三角划分的研究[J].计算机学报,1995,18(5):357-364. 被引量:62
  • 2周晓云,刘慎权.实现约束Delaunay三角剖分的健壮算法[J].计算机学报,1996,19(8):615-624. 被引量:54
  • 3潘志庚,马小虎,董军,石教英.基于图的任意域内点集的Delaunay三角剖分算法[J].软件学报,1996,7(11):656-661. 被引量:18
  • 4Sspidis N, Perueehio R. Delaunay triangulation of arbitrarily shaped planar domains[J]. CAGD, 1991,8:421-437.
  • 5Bowyer A. Computing dirichlet tessellations[J].The Comput J, 1981,24:162-166.
  • 6Watson D F. Computing the n-demensional delaunay tessellations with application to voronoi polytopes[J]. The Comput J, 1981,24: 167-172.
  • 7Weatherill N P, Hassan O. Efficient threedimesional delaunay triangulation with automatic point creation and imposed boundary constrains[J]. Int J Num Methods Eng , 1994,37:2005-2039.
  • 8Joe B. Construction of three-dimensional delaunay triangulations using local transformations[J].Compu Aided Geo Design,1991,8: 123-142.
  • 9Baker T J. Automatic mesh generation for complex three-dimensional regions using a constrained delaunay triangulation [J]. Eng with Computer,1989,5:161-175.
  • 10George P L. Improvements on delaunay-based threedimensional automatic mesh generator [J]. Finite Elements in Analysis and Design, 1997,25:297-317.

共引文献12

同被引文献50

引证文献9

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部