期刊文献+

CYPK-KNN:一种改进的移动对象KNN查询算法 被引量:1

CYPK-KNN:A Modified Monitoring KNN Queries Over Moving Objects Algorithm
下载PDF
导出
摘要 目的改进YPK-KNN算法以提高其查询效率.方法利用网格对移动对象进行索引.确定一个尽可能小的搜索区域,使得此区域一定包含距离查询点最近的K个移动对象,然后在此区域内完成查询点的KNN查询.结果针对真实数据集的实验结果表明在同等条件下,改进算法的查询执行时间明显小于原算法.而且随着移动对象个数的增加和网格划分粒度的减小这种优势随之增加.结论改进的移动对象YPK-KNN查询算法有效提高了原算法的查询效率. YPK-KNN is a typical k-nearest neighbor queries' algorithm over moving objects. This paper proposes an algorithm to improve the efficiency of YPK-KNN query algorithm. Our method uses a grid to index moving objects. First, it determines a searching area as small as possible, which must include the k-nearest neighbor of the query point; second, it completes the query answer in this region. Based on the real-life datasets, the experiment results show that our advanced algorithm's runtime is much shorter than before under the same conditions. And the advantage is more and more obvious with the numbers of the moving objects increasing and the grid granularity decreasing. K-nearest neighbor query over moving objects is very important for LBS. This paper has improved the typical YPK-KNN queries' algorithm and has proved that our modified algorithm is more effective than before.
出处 《沈阳建筑大学学报(自然科学版)》 EI CAS 2006年第6期1004-1007,共4页 Journal of Shenyang Jianzhu University:Natural Science
基金 国家科技攻关项目(2002BA107B0903)
关键词 移动对象 KNN 网格索引 快照 moving object KNN grid indices snapshot
  • 相关文献

参考文献8

  • 1George K,Dimitrios G,Vassilis J T.Nearest neighbor queries in a mobile environment[C]//STDBM' 99.Edinburgh:Scotland,1999:119-134.
  • 2Sun J M.Querying about the past,the present,and the future in spatio-temporal databases[C]//Proc.20th IEEE Int'l Conf.Data Engineering.Los Alamitos:CA:IEEE Computer Society Press,2004,202-213.
  • 3Tao Y,Papadias D.Time-parameterized queries in spatio-temporal databases[C]//Proceedings of the ACM SIGMOD Conference.Madison:WI,2002:334-345.
  • 4Raptopoulou K,Papadopoulos A,Manolopoulos Y.Fast nearest-neighbor query processing in moving-object databases[J].GeoInformatica,2003,7(2):113-137.
  • 5Saltenis S,Jensen C S,Leutenegger S,et al.Indexing the positions of continuously moving objects[C]//Proc.ACMSIGMOD Conf.Management of Data.New York:ACM Press,2000:331-342.
  • 6Dongseop K,Sangjun L,Wonik C,et al.An adaptive hashing technique for indexing moving objects[J].Data & Knowledge Engineering,2006,56 (3):287 -303.
  • 7Yu X,Pu K,Koudas N.Monitoring k-nearest neighbor queries over moving objects[J].ICDE,2005 (2),631-642.
  • 8Brinkhoff T.A framework for generating networkbased moving objects[J].GeoInformatica,2002,6 (2):153-180.

同被引文献5

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部