期刊文献+

64层螺旋CT的层敏感度曲线测试 被引量:11

Measurement of slice sensitivity profile for a 64-slice spiral CT system
原文传递
导出
摘要 目的测试和评价64层螺旋CT的层敏感度曲线(SSP)及有效层厚半高宽(FWHM)。方法对SomatomSensation64层螺旋CT,使用临床常用的腹部螺旋扫描模式和CT质控delta(δ)体模,分别以螺距(pitch)=0.50、0.75、1.00、1.25、1.50,重建层厚0.6mm(标称值)进行扫描和重建。对于pitch=1.00,再分别以层厚1.0、1.5mm进行重建。然后测试各种情况的SSP和有效层厚。结果对于标称层厚0.6mm,不同pitch时测试的有效层厚分别为0.67、0.67、0.66、0.69、0.69mm;pitch=1.00时,标称层厚0.6、1.0、1.5mm的有效层厚分别为0.66、1.06、1.52mm。有效层厚均略大于标称层厚,但与标称层厚相比均不超过0.1mm。测试的SSP形状近似钟形,左右分布基本对称,没有延伸较长的尾部;随着重组层厚的增加,SSP逐渐变平阔;当pitch改变时,SSP变化轻微。结论对于Sensation64层螺旋CT,pitch的变化对SSP、有效层厚和z轴空间分辨率的影响很小。这一结论有助于临床应用中优化CT扫描方案。 Objective To measure and evaluate slice sensitivity profile (SSP) and the full width at half-maximum(FWHM) for a 64-slice spiral CT system. Methods Using the same CT technique and body mode as those used for clinical CT, delta phantom was scanned with Somatom Sensation 64-slice spiral CT. SSPs and FWHM were measured both with reconstruction slice width of 0. 6 mm at pitch = 0. 50, 0. 75, 1.00, 1.25, 1.50 and with reconstruction slice width of 0. 6, 1.0, 1.5 mm at pitch = 1 respectively. Results For normal slice width of 0. 6 mm, the measured FWHM, i.e. effective slice width, is 0. 67, 0. 67, 0. 66, 0. 69, 0. 69 mm at different pitch. All the measured FWHM deviate less than 0. lmm from the nominal slice width. The measured SSPs are symmetrical, bell-shaped curves without far-reaching tails, and show only slight variations as a function of the spiral pitch. When reconstruction slice width increase, relative SSP become wider. Conclusions The variation of pitch hardly has effect all on SSP, effective slice width, and z-direction spatial resolution for Sensation 64-slice spiral CT system, which is helpful to optimize CT scanning protocol.
出处 《中华放射学杂志》 CAS CSCD 北大核心 2006年第11期1210-1212,共3页 Chinese Journal of Radiology
关键词 体层摄影术 X线计算机 评价研究 Tomography, X-ray computed Evaluation study
  • 相关文献

参考文献8

  • 1Flohr T, Stierstorfer K, Bruder H, et al. Image reconstruction and image quality evaluation for a 16-slice CT scanner. Med Phys, 2003,30:832-845.
  • 2Fuchs T, Krause J, Schaller S, et al. Spiral interpolation algorithms for muhislice spiral CT-part Ⅱ : measurement and evaluation of slice sensitivity profiles and noise at a clinical muhislice system. IEEE Trans Med Imaging, 2000,19:835-847.
  • 3Schaller S, Flohr T, Klingenbeck K, et al. Spiral interpolation algorithm for multi slice spiral CT-part Ⅰ: theory. IEEE Trans Med Imaging, 2000,19:822-834.
  • 4Wang G, Vannier MW. Longitudinal resolution in volumetric X-ray computerized tomography : analytical comparison between conventional and helical computerized tomography. Med Phys,1994,21:429-433.
  • 5Liang Y, Kruger RA. Dual-slice spiral versus single-slice spiral scanning: comparison of the physical performance of two computed tomography scanners. Med Phys, 1996,23:205-220.
  • 6Mahesh M. Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics, 2002,22:949-962.
  • 7Venema HW, Phoa SS, Mirck PG, et al. Petrosal bone: Coronal reconstructions from axial spiral CT data obtained with 0.5 mm collimation can replace direct coronal sequential CT scans.Radiology, 1999,213 : 375-382.
  • 8McCollough CH, Zink FE. Performance evaluation of a muhi-slice CT system. Med Phys, 1999,26:2223-2230.

同被引文献57

引证文献11

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部