期刊文献+

基于Boosting机制的决策树集成分类器识别嗜热和常温蛋白

Application of Boosting-based Decision Tree Ensemble Classifiers for Discrimination of Thermophilic and Mesophilic Proteins
下载PDF
导出
摘要 采用Boosting机制的决策树集成分类器对嗜热和常温蛋白进行模式识别。通过自一致性检验、交叉验证和独立样本测试三种方法检测,其中作为Boosting算法中新的Logitboost算法表现更好,其识别的精度分别为100%、88.4%和89.5%,优于神经网络的识别效果。同时探讨了蛋白质分子大小对识别效果的影响。结果表明,将Boosting算法与其它单一分类器有效结合,有望提高研究者对生物分子相关特性的识别能力。 In this paper, the Boosting-based decision tree ensemble classifiers were applied to discriminate thermophilic and mesophilic proteins. Three methods, namely, self-consistency test, 5-fold cross-validation and independent testing with other dataset, were used to evaluate the performance and robust of the models. Logitboost, as a novel classifier in Boosting algorithm, performed better than Adaboost. The overall accuracy of the three methods was 100% ,88.4% and 89.5% , respectively. It was demonstrated that LogitBoost performed comparably or even better than that of neural network, a very powerful classifier widely used in biological literatures. The influence of protein size on discrimination was addressed. It is anticipated that the power in predicting many bio-macromolecular attributes will be further strengthened if the Boosting and some other existing algorithms can be effectively complemented with each other.
出处 《生物工程学报》 CAS CSCD 北大核心 2006年第6期1026-1031,共6页 Chinese Journal of Biotechnology
基金 国务院侨办科研基金项目(No.05Q0018) 福建省科技计划项目重点项目基金(No.2003I020)资助。~~
关键词 BOOSTING 决策树 集成分类器 模式识别 嗜热蛋白 Boosting, decision tree, ensemble classifier, pattern recognition, thermophilic protein
  • 相关文献

参考文献4

二级参考文献30

  • 1Schapire R,Singer Y.BoostTexer:A system for multiclass multi-label text categorization[J].Machine Learning, 1998;39(2/3): 135-168.
  • 2Ting K M,Zheng Z.Improving the performance of boosting for Naive Bayesian classification[C].In:Proceedings of the Third Pacific-Asia Conference on Methodologies for Knowledge Discovery and Data Mining, 1999: 296-305.
  • 3McCallum A,Nigam K.A Comparison of Event Models for Naive Bayesian Text Classification[C].In:Proc of the AAAI/ICML-98 Workshop on Learning for Text Categorization, 1998:41-48.
  • 4Dietterich T G,Kong E B.Machine Learning Bias,Statistical Bias,and Statistical Variance of Decision Tree Algorithms[R].Technical Report, Dept of Computer Science, Oregon State University, Corvallis,Oregon, 1995.
  • 5Ali K M.Learning Probabilistic Relational Concept Descriptions[D].Ph D diss. Dept of Info and Computer Science,Univ of Califomia,Irvine,1996.
  • 6Zheng Z,Webb G I.Stochastic Attribute Selection Committees[R].Technical Report(TR C98/08),School of Computing and Mathematics ,Deakin University,Australia,1998.
  • 7Lili Diao,Mingyu Lu,Yuchang Lu et al. Using Boosting Mechanism to Refine the Threshold of VSM-based Similarity in Text Classification[C].In:Proc of the 4th World Congress on Intelligent Control and Automation' 2002 (WCICA'02), 2002: 2326-2329.
  • 8PICARD RW.Affective Computiong[M].London,England:MIT Press,1997.
  • 9VALIANT LG.A Theory of the Learnable[J].Communication of the ACM,1984,27(22):1134-1142.
  • 10SCHAPIRE RE.The Strength of Weak Learnability[J].Machine Learning,1990,5(2):197-227.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部