摘要
提出一种基于BP神经网络的二步检查法实体匹配新算法,将基于学习的思想引入到异构数据库实体匹配领域中,避开了传统方法计算属性权重的问题。实验结果显示,该算法很有效,能明显提高实体匹配的查准率,有较强的环境动态适应性,可以实现实体匹配的自动化。
A methodology for entities matching algorithm based on two-phase-check BP neural network is proposed. Will study the thought will introduce in the field of heterogeneous database entities matching, avoided computing the attributes weights. The experimental result show, the algorithm is very effective, and improve the precision ratio, has the stronger environment dynamic compatibility, can realize the entities matching automation.
出处
《计算机应用研究》
CSCD
北大核心
2006年第12期38-39,73,共3页
Application Research of Computers
基金
国家自然科学基金资助项目(70371030)
重庆市教委基金资助项目(040212)
关键词
BP神经网络
实体匹配
二步检查法
异构数据库
BP Neural Network
Entities Matching
Two-Phase-Checking Algorithm
Heterogeneous Databases