期刊文献+

基于统计矢量矩阵的用户参数描述与管理

Description and Interactive Management of User Preferences Based on Statistical Vector Matrix
下载PDF
导出
摘要 针对目前没有公认的模型可靠地描述用户参数的问题,提出了在MPEG-21(Moving P icture ExpertsG roup 21)下基于统计矢量矩阵和交互式管理相结合的方法,并通过数字项调节和代理的协作将用户参数的描述和管理在一个模型中实现。由于对于用户参数的管理与多媒体应用系统是分开进行的,从而提高了多媒体应用系统的效率。仿真结果表明,该方法能够对于80%左右的相似性用户参数选择进行有效归类和管理。 There is no accepted model to provide formal and reliable representation so far and the method based on combination of SVM (Statistical Vector Matrix) and interactive management is presented aimed at this in MPEG-21 ( Moving Picture Experts Group 21 ), which will categorize the same or similar users' choices according to their priorities systematically and integrate user preferences into one model through the collaboration of digital item adaptation and agent and the management of user preferences is implemented separately from multimedia application system to improve the efficiency. The simulation results show that the method will be effective in utilizing and classifying user preferences based on almost 80% similarities of user preferences in MPEG-21.
出处 《吉林大学学报(信息科学版)》 CAS 2006年第6期629-634,共6页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(60372060)
关键词 多媒体框架标准 用户参数 统计矢量矩阵 multimedia framework standard user preferences statistical vector matrix
  • 相关文献

参考文献15

  • 1ISO/IEC JTC1/SC29/WG11 ISO/IEC TR 21000-1.Information Technology-Multimedia Framework MPEG-21 Part 1:Vision,Technologies and Strategy[S].1 st Edition.
  • 2DepartmentofInformationTechnology (ITEC),Klagenfurt University,Austria[EB/OL].(2004-10-03)[2006-04-21].http://MPEG-21.itec.uni-klu.ac.at/cocoon/mpeg21/_mpeg21Parts.html.
  • 3GOLDMAN S A,WARMUTH M K.Learning Binary Relations Using Weighted Majority Voting[J].Machine Learning,1995,20:245-271.
  • 4FAN Lin,LIU Wen-yin,ZHENG Chen,et al.User Modeling for Efficient Use of Multimedia Files[J/OL].(2001-10-16)[2006-04-21].http://research.microsoft.com/~zhengc/papers/PCM2001_UM.pdf.
  • 5SUNG Y J,JEONG H H,TAEK S K.A Formal Model for User Preference[C] //Proceedings of IEEE International Conference on Data Mining.Japan:Maebashi Press,2002:235-242.
  • 6JOAQUIN D,NAOHIRO I.Memory-Based Weighted Majority Prediction for Recommender Systems[C] //Proceedings of ACM SIGIR'99 Workshop on Recommender Systems.UC,USA:Berkeley Press,1999:251-257.
  • 7ANTHONY V.MPEG-21 Digital Item Adaptation:Enabling Universal Multimedia Access[J].IEEE Multimedia,2004,11(3):84-87.
  • 8SUN Hui-fang,VETRO A,ASAI K.Resource Adaptation Based on MPEG-21 Usage Environment Descriptions[C] //Proceedings of IEEE International Symposium on Circuits and Systems.Switzerland:Geneva University Press,2003:536-539.
  • 9ISO/IEC JTC 1/SC 29/WG 11.Information Technology-Multimedia Framework-Part 7:Digital item adaptation[S].2004:1-175.
  • 10CHEN Qiang,CHEN He-xin.The Trend to Composition of Electronic Services in MPEG-21[C] //Proceedings of IEEE2005' SOLI.Beijing,China:Tsinghua University Press,2005:829-832.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部