摘要
提出了一种可借助于最小敏感性原理求解本征能量的双变分参数的近似方法。阐明了将这种近似方法应用于复立方非谐振子的有效性,给出了决定两变分参数的方程组以及计算复立方非谐振子系统的哈密顿量的矩阵元的完整计算公式。分析表明,通过数值计算可得到该系统哈密顿量的所有本征值的近似值。
It proposes an approximation method with two variational parameters for finding the eigen - energies by principle of minimal sensitivity. It illustrates the effectiveness of applying it to complex cubic anharmonic oscillator. Furthermore ,the equations determining variational parameters and all the formulas calculating matrix elements of Hamiltonian are derived. It is shown that all the approximating eigen - values of the Hamihonian may be obtained by means of numerical calculation.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2006年第5期455-458,共4页
Journal of Nanchang University(Natural Science)
关键词
复立方非谐振子
变分矩阵近似法
最小敏感性原理
complex cubic anharmonic oscillator
approximation method by variational matrix
principle of minimal sensitivity