期刊文献+

基于小波变换和模糊神经网络的运动员投掷力信息识别方法 被引量:4

Recognition Method of Throwing Force of Athlete Based on Wavelet & FNN
下载PDF
导出
摘要 在详细分析滑步式投掷铅球动作特性的基础上,设计了一种有效结合小波变换和模糊神经网络的运动员投掷力信息识别新方法。利用小波分解与重构的方法对信号进行了去噪处理,并采用小波系数的能量值作为运动员投掷力曲线的特征,将特征向量作为模糊神经网络的输入,对运动员投掷力曲线进行识别。经过比较实验验证,该算法既降低了噪声的影响,又在有效提取特征的同时减少了神经网络的运算量,提高了识别速度,具有较高的识别精度。 A novel method for recognition of athlete's throwing force is introduced in the paper, which is based on the motion analysis of gliding shot putting and combines the algorithms of wavelet transform and FNN. Using the wavelet decomposition and reconstruction method, the noise is restrained efficiently. In order to identify the throwing force curves of different motion phases, the signal features are extracted using wavelet transform method, The energy values of wavelet coefficients are chosen as signal features and then input into the FNN for recognition. The experiment shows that the method has high anti-noise ability, it not only extracts the features efficiently, but also decreases the burden of neural network. Therefore, the recognition speed is increased and recognition efficiency of neural network is improved.
出处 《电子测量与仪器学报》 CSCD 2006年第5期44-49,共6页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金资助项目(编号:60343006 60505012)。
关键词 投掷力 小波变换 特征提取 模糊神经网络 识别 throwing force, wavelet transform, feature extraction, FNN, recognition.
  • 相关文献

参考文献9

  • 1孙旺强,宋光明,邱联奎,沈春山,唐毅,葛运建.基于三维加速度计数字铅球的设计与实现[J].计算机工程与应用,2005,41(4):102-104. 被引量:4
  • 2Regerio Radrigues Lima Cisi, et al. Human Gait Analysed by an Artificial Neural Network Model [ C ]. Proceedings of the IV Brazilian Conference on Neural Network, 1999,148 - 151.
  • 3唐毅,葛运建,袁红艳,王定成.模糊神经网络在运动员脚力信息识别中的应用[J].系统仿真学报,2003,15(10):1412-1414. 被引量:4
  • 4HongYan Yuan, et al. A New Sensor Applied to Measure Shot Put Throwing Force[ C ]. Intelligent Control and Automation, Fifth World Congress on, 2004 (4) : 3775 -3778.
  • 5崔景泰.小波分析导沧[M].西安:西安交通大学出版社,1995.
  • 6文莉,刘正士,葛运建.小波去噪的几种方法[J].合肥工业大学学报(自然科学版),2002,25(2):167-172. 被引量:154
  • 7王继成.一个基于模糊神经网络的模式分类系统[J].计算机研究与发展,1999,36(1):26-30. 被引量:10
  • 8Man Gyun Na, Sun Ho Shin, Sun Mi Lee, et al, Prediction of Major Transient Scenarios for Severe Accidents of Nuclear Power Plants [ J]. Nuclear Science, IEEE Transactions on Volume 51, Issue 2, 2004 (4) :313 -321.
  • 9Patrick K. Simpson, Fuzzy Min - Max Neural Networks-Part 1 : Classification[ J ]. IEEE Transactions on Neural Networks, 1992, 3(5) : 776-786.

二级参考文献16

  • 1彭玉华,汪文秉.小波用于估测散射波波达时间及去噪[J].电子学报,1996,24(4):113-116. 被引量:18
  • 2宋光明 唐毅 袁红艳等 梅涛 汪增幅 葛运建编.获取三维力信息的数字铅球设计与实验研究[C].梅涛,汪增幅,葛运建编.信息获取科学技术与应用[C].合肥:中国科学技术大学出版社,2003.133-135.
  • 3Dequan Zou, D Sc Modeling, Computer Simulation In Biomechanics[D]. Review of Washington University in StLouis, 2000.
  • 4Rogerio Rodrigues Lima Cisi, Euvaldo F Cabral Jr. Human Gait Analysed by an Artificial Neural Network Model [C]. Proceedings of the IV Brazilian Conference on Neural Networks-IV 148-151, 20-22,1999-ITA.
  • 5Berbyuk V, Demydyuk M, B Lytwyn. Mathematical modeling of human gait based on experimental data [J]. J Visnyk Lviv University,Ser. Applied Mathematics and Computer Science, 2000, (accepted).
  • 6Masato Maeda,Eiji Shamoto,Toshimichi Moriwaki et al.Measuiement of Applied Force and Deflection in the Javelin Throw[J].Journal of Applied Biomechanics, 1999 ; 15 (4) : 429-442.
  • 7Microcomputer-based acceleration sensor device for sports biomechanics-stroke evaluation by using swimmer's wrist acceleration[C]. In :Proceedings of IEEE,2002-06; 12:699-704.
  • 8Universal Serial Bus Specification Revision 2.0.2000-04.
  • 9韩震宇,申旭娟,石章林.信号的多分辨率分析及其在消噪中的应用[J].四川联合大学学报(工程科学版),1999,3(1):52-58. 被引量:27
  • 10杜芳,卢文胜,曹文清.振动台试验测试信号去噪的小波变换方法[J].振动与冲击,1999,18(2):26-29. 被引量:11

共引文献168

同被引文献27

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部