期刊文献+

基于特征子空间的KPCA及其在故障检测与诊断中的应用 被引量:19

Feature subspace based KPCA and its application to fault detection and diagnosis
下载PDF
导出
摘要 针对标准KPCA(kernelprincipalcomponentanalysis)不适合大样本分析的缺点,提出了一种基于特征子空间的KPCA(FSKPCA)及其故障检测与诊断方法,该方法通过构建具有较小维数的特征子空间上的正交基来简化核矩阵,从而降低KPCA的计算复杂性.与标准KPCA方法相比,FSKPCA方法具有更高的计算效率且只需较小的计算机存储空间.通过非等温连续反应釜过程的故障检测与诊断的应用实例,说明了本算法的有效性. A feature subspace based kernel principal component analysis (KPCA), method (FS KPCA) and its application to fault detection and diagnosis are presented in this paper to overcome the shortcoming of the standard KPCA method which is not appropriate to deal with a large number of training data. FS KPCA simplifies the kernel matrix and reduces the computational cost of KPCA by constructing a lowerdimensional orthonormal based on feature subspace. When applied to process monitoring, the FS_ KPCA- based method is more efficient in computation and needs less computer memory than standard KPCA-based methods. Computer simulation of non-isothermal CSTR process monitoring demonstrates the effectiveness and efficiency of the proposed method.
出处 《化工学报》 EI CAS CSCD 北大核心 2006年第11期2664-2669,共6页 CIESC Journal
基金 国家高技术研究发展计划项目(2002AA412010).~~
关键词 主成分分析 PCA 核PCA 故障检测 故障诊断 principal component analysis PCA kernel PCA fault detection fault diagnosis
  • 相关文献

参考文献14

  • 1Cho Ji-Hoon,Lee Jong-Min,Wook Choi Sang,Lee Dongkwon,Lee In-Benm.Fault identification for process monitoring using kernel principal component analysis.Chemical Engineering Science,2005,60:279-288
  • 2Dong D,Mcavoy T J.Nonlinear principal component analysis based on principal curves and neural networks.Computers and Chemical Engineering,1996,20:65-78
  • 3Scholkopf B,Smola A,Muller K.Nonlinear component analysis as a kernel eigenvalue problem.Neural Computation,1998,10(5):1299-1319
  • 4Kramer M A.Nonlinear principal component analysis using autoassociative neural networks.AIChE Journal,1991,37(2):233-243
  • 5Dong D,McAvoy T J.Nonlinear principal component analysis based on principal curves and neural networks.Computers and Chemical Engineering,1996,20:65-78
  • 6Jia F,Martin E B,Morris A J.Nonlinear principal components analysis with application to process fault detection.International Journal of Systems Science,2001,31:1473-1487
  • 7Choi Sang Wook,Lee Changkyu,Lee Jong-Min,Park Jin Hyun,Lee In-Beum.Fault detection and identification of nonlinear processes based on kernel PCA.Chemometrics and Intelligent Laboratory Systems,2005,75:55-67
  • 8Lee Jong-Min,Yoo Changkyoo,Sang Wook,Wanrolleghem Peter A,Lee In-Beum.Nonlinear process monitoring using kernel principal component analysis.Chemical Engineering Science,2004,59:223-234
  • 9Stefan Harmeling,Andreas Ziehe,Motoaki Kawanabe.Kernel feature spaces and nonlinear blind source separation//Dietterich T G,Brecker S,Ghahramani Z.Proceedings of the Advances in Neural Information Processing Systems.Canada:MIT Press,2002:761-768
  • 10]Leo H Chiang,Richard D Braatz.Fault detection and diagnosis in industrial systems.Great Britain:Springer-Verlag London limited,2001

同被引文献166

引证文献19

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部