期刊文献+

基于核主角的故障检测方法 被引量:2

Fault detection method based on kernel principal angle
下载PDF
导出
摘要 基于主元分析(PCA)的统计检测方法已经被广泛应用于各种化工过程的故障检测和识别.移动主元分析(movingprincipalcomponentanalysis,简称MPCA)算法基于PCA,根据主元子空间的变化来判断故障是否发生.然而,基于主元分析的统计检测方法是线性方法,无法有效应用于非线性系统.因此,提出一种适合于非线性系统的故障检测方法——基于核主角(kernelprincipalangle,简称KPA)的故障检测方法,其基本思想与MPCA相似,主要内容包括构建特征子空间和核主角测量两部分.TE过程故障检测仿真实验证明,基于核主角的故障检测方法优于传统的多元统计检测方法(cMSPC)和MPCA. Numerous statistical process monitoring methods based on principal component analysis (PCA) have been developed and applied to various chemical processes for fault detection and identification. Moving principal component analysis (MPCA) is one of the improved statistical process monitoring methods based on PCA. The change in the subspace spanned by some selected principal components is monitored for fault detection in MPCA. However, PCA-based monitoring methods are linear techniques and have been proved inefficient and problematic for nonlinear systems. This paper presents a novel fault detection method based on kernel principal angle (KPA), which is efficient for nonlinear systems. Constructing feature subspace and computing the kernel principal angel are two main parts in the proposed method. That is, the basic idea of the KPA-based detection method is similar to that of MPCA. The performance of the proposed fault detection method was compared with the conventional multivariate statistical process control (cMSPC) and MPCA in the application to simulated data obtained from the Tennessee Eastman (TE) process. The results clearly showed that the performance of the KPA-based fault detection method was considerably better than that of the other two.
出处 《化工学报》 EI CAS CSCD 北大核心 2006年第11期2670-2676,共7页 CIESC Journal
基金 国家重点基础研究发展计划项目(2002CB312200).~~
关键词 核函数 特征空间 故障检测 主元分析 kernel function feature space fault detection principal component analysis
  • 相关文献

参考文献10

  • 1郭明,王树青.基于特征子空间的系统性能监控与工况识别[J].化工学报,2004,55(1):151-154. 被引量:13
  • 2Manabu Kano,Koji Nagao,Shinji Hasebe,Iori Hashimoto,Hiromu Ohno,Ramon Strauss,Bhavik Bakshi.Comparison of statistical process monitoring methods:application to the eastman challenge problem.Computers and Chemical Engineering,2000,24(2-7):175-181
  • 3Manabu Kano,Shinji Hasebe,Iori Hashimoto,Hiromu Ohno.A new multivariate statistical process monitoring method using principal component analysis.Computers and Chemical Engineering,2001,25(7/8):1103-1113
  • 4Manabu Kano,Koji Nagao,Shinji Hasebe,Iori Hashimoto,Hiromu Ohno,Ramon Strauss,Bhavik R Bakshi.Comparison of multivariate statistical process monitoring methods with applications to the eastman challenge problem.Computers and Chemical Engineering,2002,26(2):161-174
  • 5Baudat G,Anouar F.Feature vector selection and projection using kernels.Neurocomputing,2003,55(1/2):21-38
  • 6Lior Wolf,Amnon Shashua.Learning over sets using kernel principal angles.Journal of Machine Learning Research,2004,4(6):913-931
  • 7Downs J J,Vogel E F.A plant-wide industrial process control problem.Computers Chem.Eng.,1993,17(3):245-255
  • 8Lyman P R,Georgakis C.Plant-wide control of the tennessee eastman problem.Computers and Chemical Engineering,1995,19(3):321-331
  • 9Leo H Chiang,Randy J Pell,Mary Beth Seasholtz.Exploring process data with the use of robust outlier detection algorithms.Journal of Process Control,2003,13(5):437-449
  • 10Chinang L H,Russel E L,Braatz R D.Fault Detection and Diagnosis in Industrial Systems.London:Springer-Verlag,2001:103-112,144

二级参考文献6

  • 1Dunia R, Qin S J. Subspace Approach to Multidimensional Fault Identification and Reconstruction.AIChE J.,1998,44(8):1813-1831
  • 2WangHaiqing(王海清) SongZhihuan(宋执环) WangHui(王慧).Fault Detection Behavior Analysis of PCA—based Process Monitoring Approach[J].Journal of Chemical Industry and Engineering (China)(化工学报),2002,53(3):297-301.
  • 3Zhang Jie(张杰), Yang Xianhui(阳宪惠). Multivariate Statistical Process Control (多变量统计过程控制).Beijing:Chemical Industry Press,2000
  • 4Zhang J, Martin E B, Morris A J. Fault Detection and Diagnosis Using Multivariate Statistical Techniques.Chemical Engineering Research and Design, 1996,74(1):89-96
  • 5Kano M, Hasebe S, Hashimoto I. A New Multivariate Statistical Process Monitoring Method Using Principal Component Analysis. Computers and Chemical Engineering,2001, 25:1103-1113
  • 6Yang Maying (杨马英). Predictive Control Strategy and Its Application in FCCU Process: [dissertation](学位论文).Hangzhou:Zhejiang University,1996

共引文献12

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部