期刊文献+

高强度聚焦超声场中空化泡群的结构及其形成过程 被引量:9

Cavitation bubble structure and its formation process in high-intensity focused ultrasound field
下载PDF
导出
摘要 空化是高强度聚焦超声(HIFU)引起组织损伤的作用机制之一。本文使用高速摄影技术研究了HIFU场中空化泡群结构的空间分布特征、超声功率对空化泡群结构的影响、空化泡群结构的建立过程尤其是起始过程。空化泡群的结构以空化泡在声场中的区域化分布为特征.在一定功率范围内空化泡群的结构保持稳定。从建立过程来看,空化泡群首先出现在焦区,然后在焦后区(远离换能器的区域)形成,焦前区(靠近换能器的区域)空化泡群最后形成。在对空化泡群起始的研究中发现最初拍摄到的空化泡群形状与焦区形状接近,并且观察到空化泡在焦区发生聚集然后破裂的现象。 Cavitation is one of the mechanisms that lead to tissue erosion by high intensity focused ultrasound (HIFU). High-speed photography was used to study spatial distribution characteristics of cavitation bubble cloud structure in HIFU field, the influence of ultrasonic power to the structure, and its formation process with special attention to its inception process. The structure of the cavitation bubble cloud is featured by the regional distribution of cavitation bubbles. Within a range of ultrasonic power levels the structure remains stable. In terms of its formation process, cavitation bubble cloud first emerges in the focal region, then appears in the post-focal region (far from the transducer) and finally forms in the pre-focal region (near to the transducer). During the inception process of the cavitation bubble cloud, the initial photographed bubble cloud is approximately the same shape as the focal region, and cavitation bubbles are observed to coalesce and collapse in the focal region.
出处 《声学学报》 EI CSCD 北大核心 2006年第6期532-535,共4页 Acta Acustica
基金 国家自然科学基金资助项目(30370403) 博士点基金项目(20030698016)
关键词 高强度聚焦超声 空化泡 群结构 超声场 空间分布特征 高速摄影技术 组织损伤 超声功率 Acoustic fields Bubble formation Cavitation Focusing High speed photography Pressure drop Ultrasonic transducers Ultrasonics
  • 相关文献

参考文献11

  • 1王绪飞,王晓东,陆明珠,万明习.球面矩形阵元相控阵高强度聚焦超声手术的子阵工作模式[J].声学学报,2005,30(5):473-480. 被引量:9
  • 2Lili C, ter Haar G, Hill C R. Influence of ablated tissue on the formation of high-intensity focused ultrasound lesions.Ultrasound Med. Biol., 1997; 23(6): 921-931
  • 3Chen W S, Lafon C, Matula T J, Vaezy S, Crum L A.Mechanisms of lesion formation in high intensity focused ultrasound therapy. IEEE Ultrasonics Symposium, 2002;2:1443-1446
  • 4Melodelima D, Chapelon J Y, Theillere Y, Cathignol D.Combination of thermal and cavitation effects to generate deep lesions with an endocavitary applicator using a plane transducer: ex vivo studies. Ultrasound Med. Biol., 2004;30(1): 103-11
  • 5Poliachik S L, Chandler W L, Mourad P D, Olios R J, Crum L A. Activation, aggregation and adhesioin of platelets exposed to high-intensity focused ultrasound. Ultrasound Med. Biol,2001; 27(11): 1567-1576
  • 6Huber P,. Jochle K, Debust J. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter. Phys. Med. Biol., 1998;42(10):3113-3128
  • 7Luther S, Mettin R, Koch P, Lauterborn W. Observation of acoustic cavitation bubbles at 2250 frames per second.Ultrasonics Sonochemistry, 2001; 8(3): 159-162
  • 8Moussatov A, Mettin R, Granger C, Tervo T, Dubus B,Lauterborn W. Evolution of acoustic cavitation structures near larger emitting surface. WCU 2003, Paris, 2003:955-958
  • 9Ikeda T, Tosaki M, Allen J S, Matsumoto Y. Cloud cavitation control for a therapeutic ultrasound application. Fifth international Symposium on Cavitation (CAV2003) Osaka,Japan, 2003
  • 10李彬,万明习.基于超高速摄影显微成像和超声散射的纳米包膜造影微泡包膜厚度估计[J].生物物理学报,2005,21(1):71-77. 被引量:9

二级参考文献20

  • 1Fringking PJA, Jong ND. Acoustic modeling of shell-encapsulated gas bubbles. Ultrasound in Med & Biol, 1998, 24(4):523~533.
  • 2Lauterborn W, Holzfuss J, Billo A. Chaotic behavior in acoutic cavitation. IEEE Ultrasonics Symposium, 1994:801~810.
  • 3Morgan KE, Allen JS, Dayton PA, Chomas JE, Klibanov AL,Ferrara KW. Experimental and theoretical evaluation of microbubble behavior: effect of the transmitted phase and bubble size. IEEE Trans Ultrasonic Ferroelec Freq Control,2000,47:1494~1508.
  • 4Jong ND. Acoustic properties of ultrasound contrast agents.PhD thesis. Rotterdam, Holland: Erasmus University. 1993.
  • 5Church CC. The effects of an elastic solid surface layer on the radial pulsations of a gas bubble. J Acoust Soc Am, 1995,97:1510~1521.
  • 6Zhu CY, kinra KK. Time-domain ultrasonic measurement of the thickness of a sub-half-wavelength elastic layer. American society for testing and materials, 1995, 265~273.
  • 7Bevington PR, Robinson DK. Data reduction and error analysis for the physical sciences. 3rd ed. New York: Mc Graw Hill Co, 2002.
  • 8Sboros V, Morgan CM, Pye SD, McDicken WN. Contrast agent stability: a continuous B-mode imaging approach.Ultrasound in Med & Biol, 27(10):1367~1377.
  • 9Gail ter Haar. Acoustic Surgery. Physics Today, 2001;54(12): 29-34.
  • 10WANG Zhibiao, BAI Jin et al. Study of a "biological focal region" of high-intensity focused ultrasound. Ultrasound in Medicine & Biology, 2003; 29(5): 749-754.

共引文献16

同被引文献90

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部