摘要
Recently, cryptographic applications based on finite fields have attracted much attention. The most demanding finite field arithmetic operation is multiplication. This investigation proposes a new multiplication algorithm over GF(2^m) using the dual basis representation. Based on the proposed algorithm, a parallel-in parallel-out systolic multiplier is presented, The architecture is optimized in order to minimize the silicon covered area (transistor count). The experimental results reveal that the proposed bit-parallel multiplier saves about 65% space complexity and 33% time complexity as compared to the traditional multipliers for a general polynomial and dual basis of GF(2^m).
Recently, cryptographic applications based on finite fields have attracted much attention. The most demanding finite field arithmetic operation is multiplication. This investigation proposes a new multiplication algorithm over GF(2^m) using the dual basis representation. Based on the proposed algorithm, a parallel-in parallel-out systolic multiplier is presented, The architecture is optimized in order to minimize the silicon covered area (transistor count). The experimental results reveal that the proposed bit-parallel multiplier saves about 65% space complexity and 33% time complexity as compared to the traditional multipliers for a general polynomial and dual basis of GF(2^m).