期刊文献+

A Note on the Stopping Redundancy of Linear Codes

A Note on the Stopping Redundancy of Linear Codes
原文传递
导出
摘要 In this paper, we study the stopping sets, stopping distance and stopping redundancy for binary linear codes. Stopping redundancy is a new concept proposed by Schwartz and Vardy recently for evaluating the performance of a linear code under iterative decoding over a binary erasure channel (BEC). Since the exact value of stopping redundancy is difficult to obtain in general, good lower and upper bounds are important. We obtain a new general upper bound on the stopping redundancy of binary linear codes which improves the corresponding results of Schwartz and Vardy. In this paper, we study the stopping sets, stopping distance and stopping redundancy for binary linear codes. Stopping redundancy is a new concept proposed by Schwartz and Vardy recently for evaluating the performance of a linear code under iterative decoding over a binary erasure channel (BEC). Since the exact value of stopping redundancy is difficult to obtain in general, good lower and upper bounds are important. We obtain a new general upper bound on the stopping redundancy of binary linear codes which improves the corresponding results of Schwartz and Vardy.
作者 夏树涛
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2006年第6期950-951,共2页 计算机科学技术学报(英文版)
关键词 low-density parity-check (LDPC) codes iterative decoding stopping sets stopping distance stopping redundancy low-density parity-check (LDPC) codes, iterative decoding, stopping sets, stopping distance, stopping redundancy
  • 相关文献

参考文献5

  • 1Schwartz M, Vardy A. On the stopping distance and the stopping redundancy of codes. In Proc. IEEE Int. Symp. Inform. Theory, Adelaide, Australia, 2005, pp.975-979.
  • 2Schwartz M, Vardy A. On the stopping distance and the stopping redundancy of codes. IEEE Trans. Inform. Theory, 2006, 52(3): 922-932.
  • 3Kashyap N, Vardy A. Stopping sets in codes from designs. In Proc. IEEE Int. Symp. Inform. Theory, Yokohama, Japan, 2003, p.122.
  • 4Di C, Proietti D, Telatar I E et al. Finite-length analysis of low-density parity-check codes on the binary erasure channel. IEEE Trans. Inform. Theory, 2002, 48(6): 1570-1579.
  • 5Kou Y, Lin S, Fossorier M P C. Low-density parity-check codes based on finite geometries: A rediscovery and new results. IEEE Trans. Inform. Theory, 2001, 47(7): 2711-2736.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部