摘要
数学思想方法是学生数学认知结构中最积极、最活跃的因素,处于数学认知结构的顶端,对学生数学认知结构的建构具有重要的意义。本文主要论述了数学思想方法学习的涵义、数学思想方法学习的心理学意义、促进数学思想方法学习的教学原则(意识性、渗透性、化隐为显、循序渐进等原则)及教学途径等,旨在帮助学生正确理解和掌握数学思想方法,促进学生数学认知结构的建构和完善,使学生真正懂得数学的价值,建立科学的数学观,从而积极主动地学习数学、发展数学和卓有成效地应用数学。
The thinking methods in mathematics is the most active factor in students' perceptive construction on mathematics, and is in the apex of students' perceptive construction, which is essential for constructing students' perceptive construction on mathematics. In this paper, the significance of I^sychology, teaching principles and teaching methods of mathematical thinking methods are discussed, this conclusion can help students to understand and master the thinking ways in mathematics, accelerate students to construct and perfect their perceptive construction on mathematics, let them understand the mathematical value in word and deed, thereby establish a proper concept of mathematics, and be conscious of learning mathematics, develop and successfully apply mathematics.
出处
《铜仁师范高等专科学校学报》
2006年第6期44-47,共4页
Journal of Tongren Teachers College
关键词
数学思想方法
学习
数学认知结构
教学原则
教学途径
thinking method in mathematics
learning
perceptive construction on mathematics
teaching principle
teaching methods