期刊文献+

PRECONDITIONING HIGHER ORDER FINITE ELEMENT SYSTEMS BY ALGEBRAIC MULTIGRID METHOD OF LINEAR ELEMENTS 被引量:2

PRECONDITIONING HIGHER ORDER FINITE ELEMENT SYSTEMS BY ALGEBRAIC MULTIGRID METHOD OF LINEAR ELEMENTS
原文传递
导出
摘要 We present and analyze a robust preconditioned conjugate gradient method for the higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite elements. Then an algebraic multigrid method of linear finite element is applied for solving the preconditioner. The optimal condition number which is independent of the mesh size is obtained. Numerical experiments confirm the efficiency of the algorithm. We present and analyze a robust preconditioned conjugate gradient method for the higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite elements. Then an algebraic multigrid method of linear finite element is applied for solving the preconditioner. The optimal condition number which is independent of the mesh size is obtained. Numerical experiments confirm the efficiency of the algorithm.
出处 《Journal of Computational Mathematics》 SCIE EI CSCD 2006年第5期657-664,共8页 计算数学(英文)
关键词 Finite element Algebraic multigrid methods Preconditioned Conjugate Gradient Condition number. Finite element, Algebraic multigrid methods, Preconditioned Conjugate Gradient, Condition number.
  • 相关文献

参考文献11

  • 1R. Bank, and J. Xu, An algorithm for coarsing unstructured meshes, Numer. Math., 73:1 (1996),1-36.
  • 2A. Brandt, Multiscale scientific computation, Six year research summary, 1999.
  • 3T.F. Chan, J. Xu and L. Zikatanov, An agglomeration multigrid method for unstructured grids,in 10-th international conference on Domain Decomposition methods, vol. 218 of Contemporary Mathematics, AMS, 1998, pp. 67-81.
  • 4J. Mandel, M. Brezina, P. Vanek, Energy optimization of algebraic multigrid bases, Computing 62:3 (1999), 205-228.
  • 5J. Ruge and K. Stiiben, Algebraic multigrid, in Multigrid Methods, S. McCormick, ed, SIAM,Philadelphia, PA, 1987.
  • 6Shu shi, Xu Jinchao, Xiao yingxiong and L, Zikatanov, Algebraic Multigrid Method on Lattice Block Materials, Recent Progress in Computional and Applied PDEs, Edited by Tony.F.Chan,et,al, Boston/London, 289-307, 2002.
  • 7K. Stuben, A Review of Algebraic multigrid, GMD Report 69, 1999.
  • 8C.W.O.U. Trottenberg AND A. Schuller, Multigrid, Academic Press Inc., San Diego, CA, 2001.
  • 9With contributions by A. Brandt,P. Oswald and K. Stiiben.P. Vanek, M. Brezina, and J. Mandel, Convergence of algebraic multigrid based on smoothed aggregation, Nurner. Math, 88:3 (2001), 559-579.
  • 10W.L. Wan, T.F. Chan, and B. Smith, An energy-minimizing interpolation for robust multigrid methods, SIAM J. Sci. Comput, 21:3 (2000), 559-579.

同被引文献11

  • 1孙杜杜,舒适.求解三维高次拉格朗日有限元方程的代数多重网格法[J].计算数学,2005,27(1):101-112. 被引量:17
  • 2肖映雄,张平,舒适,阳莺.等代数结构面网格剖分下三维弹性问题的代数多重网格法[J].工程力学,2005,22(6):76-81. 被引量:4
  • 3Braess D. Finite elements: theory, fast solvers, and applications in solid mechanics [M]. England: Cambridge University Press, 2001.
  • 4Griebel M, Oeltz D, Schweitzer M A. An algebraic multigrid method for linear elasticity [J]. SIAM Journal of Scientific Computing, 2003, 25(2): 385-407.
  • 5Brezina M, Cleary A J, Falgout R D, Henson V E, Jones J E, Manteuffel T A, McCormick S F, Ruge J W. Algebraic multigfid based on element interpolation (AMGe)[J].Journal of Scientific Computing, 2000, 22(5): 1570- 1592.
  • 6Jones J, Vassilevski P. AMGe based on element agglomeration [J]. SIAM Journal of Scientific Computing, 2001, 23(1): 109- 133.
  • 7Sumant P S, Cangellaris A C, Aluru N R. A node-based agglomeration AMG solver for linear elasticity in thin bodies [J]. Communications in Numerical Methods in Engineering, 2009, 25: 219-236.
  • 8Mandel J, Brezina M, Vanek P. Energy optimization of algebraic multigrid bases [J]. Computing, 1999, 62(3): 205-228.
  • 9Xiao Y X, Shu S, Zhao T Y. A geometric-based algebraic multigrid for higher-order finite element equations in two dimensional linear elasticity [J]. Numerical Linear Algebra with Applications, 2009, 16(7): 535- 559.
  • 10Saad Y. Iterative methods for sparse linear systems [M]. 2nd ed. Philadelphia, PA: Society for Industrial and Applied Mathematies, 2003.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部