期刊文献+

两端支承输流管道的稳定性和临界流速分析 被引量:27

STABILITY AND CRITICAL FLOW VELOCITY OF SUPPORTED PIPES CONVEYING FLUID
下载PDF
导出
摘要 推导两端支承梁弯曲振动的频率方程和振型函数的解析表达式。利用频率方程讨论两端扭转弹簧刚度变化对梁的前两阶弯曲振动特征值的影响。以两端支承梁的振型函数为假设振型导出两端支承输流管道在定常流作用下临界速度的解析表达式,为今后分析这类系统的动态响应提供理论依据。利用临界流速公式系统地分析和讨论扭转刚度、重力系数和轴向预紧力对管道临界流速的影响特性。研究结果表明,量纲一扭转弹簧刚度在0到50区间内变化时对临界流速的影响较大,但大于50时影响明显减弱。当重力系数和轴向预紧力增大时,临界流速也随着增大。一般而言,两端扭转弹簧刚度越大也会增大相应的临界流速值。 The characteristic equation and the eigenfunctions of the supported beam are derived. Using the characteristic equation derived, the effect of the spring constants on the eigenvalues of the beam is discussed. The analytical expressions of critical flow velocity of the supported pipes, which may be used in the analysis of the dynamic behavior of the system, are obtained using the eigenfunctions derived for beam with the same end conditions. The effect of some parameters of the system on the values of critical flow velocity is discussed according to the analytical expressions derived. The results obtained show that the effect of the spring constants on the value of critical flow velocity is very great if their dimensionless values are taken in region 0-50, whereas the value of critical flow velocity is very little affected by the values of spring constants when the dimensionless values are greater than 50. Generally, as the gravity, tension and spring constants increase the value of critical flow velocity increase also.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2006年第11期131-136,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(10372063) 航空科学基金(04854001)资助项目
关键词 输流管道 临界流速 稳定性 Supported pipes conveying fluid Critical velocity Stability
  • 相关文献

参考文献9

二级参考文献17

  • 1Paidoussis M P. Fluid-structure instabilities. San Diego: Academic Press, 1988
  • 2Paidoussis M P, Li G X, Moon F C. Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid. J. Sound and Vibration, 1989;135:1-19
  • 3Holmes P J. Pipes supported at both ends connot flutter. J. Applied Mechanics, 1978;45:619-622
  • 4Paidoussis M P, Issid N T. Experiments on parametric resonance of pipes containing pulsatie fluid. J. Applied Mechauics, 1976; 43: 198-202
  • 5Ariaratnam S T, Namachchivaya N S. Dynamic stability of pipes conveying pulsating fluid. J. Sound and Vibration, 1986;107:215-230
  • 6Namachchivaya N S, et al. Non-linear dynamics of supported pipe conveying pulsating fluid. 1. Subharmonic resonance and 2. Combination resonance. Int. J. NonLinear Mechanics, 1989; 24:185-208
  • 7Jayaraman K, et al. Chaotic oscillations in pipes conveying pulsating fluid. Nonlinear Dynamics, 1996; 10: 333-357
  • 8Moon F C. Chaotic Vibrations, NY: John Wiley, 1987
  • 9Paidoussis M P. Fluid-structure instabilities[ M ]. V. 1, San Diego: Academic Press, 1998.
  • 10Paidoussis M P, Li G X, Rand R H. Chaotic motions of a constrained pipe conveying fluid [ J ]. J Applied Mechanics,1991, 58 : 559 - 565.

共引文献77

同被引文献212

引证文献27

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部