期刊文献+

一种新型的人脸眼睛定位方法

Novel eye detection algorithm
下载PDF
导出
摘要 提出了一种在复杂背景、光照、姿势变化条件下的人脸眼睛定位系统。首先采用Adaboost方法提取人脸,并提出了解决平面旋转和深度旋转的方法。接着,采用数学形态学提取人脸特征并用各种规则去过滤特征点。然后采用SVM眼睛确认方法确认眼睛对。最后采用Camshift和Kalman滤波进行跟踪。基于IFACE数据库的实验结果表明我们的算法具有很高的眼睛定位准确率并对光照、姿势、复杂背景不敏感。 A general and efficient design approach are presented using Adaboost, mathematical morphology, rules, SVM, Camshifl and Kalman to cope with eye detection. In order to get face in an image, Adaboost algorithm is used. An effective paradigm to cope with big view angle and planar rotated face is proposed. Then, face features including eyes and mouth are extracted using mathematical morphology. Rules are used to filter the candidates. Then, SVM is used to verify eye pair. Finally, Camshift is combined with Kalman to track face and eyes. Using this algorithm, eye-pair is located exactly from image. Experiments conducted on the IFACE database show that the approach achieves excellent performance in detectin rate and are insensitive to illumination, background and white-frame eyeglasses.
出处 《计算机工程与设计》 CSCD 北大核心 2006年第22期4232-4235,共4页 Computer Engineering and Design
基金 广州市科技计划基金项目(2002XGP16) 广州市天河区科技计划基金项目(2002XGP11)
关键词 ADABOOST 眼睛定位 数学形态学 规则 支持向量机 CamShifl KALMAN Adaboost eye locating mathematical morphology rule SVM Camshift Kalman
  • 相关文献

参考文献10

  • 1Yow KC,Cipolla R.Feature-based human face detection[J].Image and Vision Computing,1997,15(2):713-735.
  • 2Kim H,Kang W,Shin J,et al.Face detection using template matching and ellipse fitting[J].IEICE Trans Inf and Sys,2000,E38-D(11):2008-2011.
  • 3Dsuan.Training support vector machine:An application to face detection[Z].Proceeding of IEEE Conference on Computer Vision and Pattern Recognition,1997.
  • 4Viola.Rapid object detection using a boosted cascade of simple features[Z].Proceeding of IEEE Conference on Computer Vision and Pattern Recognition,2001.
  • 5毛敏峰,张星明,郭宇聪.一种基于规则的眼睛快速定位方法[J].计算机工程,2004,30(9):154-156. 被引量:6
  • 6Rainer Lienhar,Jochen Maydt.An extended set of Haar-like features for rapid object detection[Z].IEEE ICIP,2002.900-903.
  • 7Li SZ,Zhu L,Zhang ZQ,Zhang HJ.Learning to detect multi-view faces in real-time[Z].Washington DC:Proceeding of International Conference on Development and Learning,2002.
  • 8王海涛.基于灰度的人脸检测系统[M].北京:电子工业出版社,2004.
  • 9LIU Zhi-fang,YOU Zhi-sheng,Jain A K,et al.Face detection and facial feature extraction in color image[Z].Proceeding of IC CIMA 03,IEEE,2003.
  • 10Bradski G R.Computer vision face tracking for use in a perceptual user interface[Z].IEEE Workshop on Applications of Computer Vision,1998.214-219.

二级参考文献1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部