期刊文献+

遗传算法和BP网络在电池电量预测中的研究 被引量:5

Research on Capacity Predication of Battery based on BP network and Genetic Algorithm
下载PDF
导出
摘要 蓄电池剩余容量为汽车可持续行进提供有力的判据,所以,对它的准确估计有重要的意义。该文在BP网络的基础上采用一种组合方法对荷电状态进行预测;并利用BP网络学习能力与泛化能力满足的不确定关系确定隐层节点数;利用遗传算法,确定初始权值和阀值,使网络的初始条件得到优化,使神经具有更好的收敛速度和收敛质量;通过实验表明网络不仅收敛速度快,而且易达到最优解,证明网络对MH-N i电池剩余电量的预测是有效的。 The surplus capacity of battery is a reasonable criterion for the continuable travel of the vehicle. Thus , it is significant to predict it exactly. In this paper, a combined solution for prediction based on BP network is used. By giving the undefined relation between learning ability and generalization ability of BP neural network, the hidden notes are obtained. The original weights and bias are defined by using the genetic algorithm. It can improve the search efficiency and global optimization. The simulation result shows this method has high convergent speed, can obtain global optimization easily. It proves the network is successful.
出处 《计算机仿真》 CSCD 2006年第11期218-220,267,共4页 Computer Simulation
基金 教育部留学回国人员科研启动基金资助(教外司留2004-527)
关键词 误差反向传播神经网络 遗传算法 剩余电量 镍氢电池 BP network Genetic algorithm Surplus capacity MH - Ni battery
  • 相关文献

参考文献5

二级参考文献30

  • 1武妍,施鸿宝.一种遗传算法、模糊推理和BP算法相结合训练前向神经网络的方法[J].计算机工程,1997,23(S1):252-255. 被引量:2
  • 2张鸿宾.训练多层网络的样本数问题[J].自动化学报,1993,19(1):71-77. 被引量:23
  • 3阎平凡.人工神经网络的容量、学习与计算复杂性[J].电子学报,1995,23(5):63-67. 被引量:82
  • 4Barton A R. Approximation and estimation bounds for artificial neural networks. Machine Learning, 1994, 14:115-133.
  • 5Geman S. Neural networks and bias/variance dilemma. Neural Computation, 1992, 4:1-58.
  • 6Cataltepe Z, Abu-mostafa Y S, Magdon-Ismail M. No free lunch for earlystopping. Neural Computation, 1999, 11:995-1009.
  • 7Amari S, Murata N, Muller K R, et al. Asymptotic statistical theory of overtraining and cross-validation. IEEE Trans Neural Networks, 1997, 8(5): 985.-996.
  • 8Baldi P. Temporal evolution of generalization during learning in linear networks. Neural Computation, 1991, 3:589,603.
  • 9Partridge D. Network generalization differences quantified. Neural Networks, 1996, 9(2): 263-27 1.
  • 10Zha Youliang. Information uncertainty principle. Chinese Science Bulletin, 1989, 34( 1): 86 -87.

共引文献62

同被引文献25

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部