期刊文献+

一种高效的分类规则挖掘算法 被引量:7

High Efficient Algorithm for Classification Rule
下载PDF
导出
摘要 提出了一种高效的分类规则挖掘算法,它结合神经网络的容错性能和决策树的规则生成能力,采用神经网络从样本集中删除不相关的和弱相关的特征属性,同时删除训练样本集中的噪声数据。然后采用决策树从处理过的训练样本集中抽取规则,由于去除了噪声数据,因此使得所挖掘的规则精确度大大提高,同时减少了规则的数目。实验证明所提出的算法,具有很高的分类精度。 This paper presents a new high efficient classification algorithm,It integrats the Neural Network and decision tree.The Neural Network is used to reduce the irrelevance feature set and filter the noise data in the training dataset, The decision tree extracts rule set from the worked training dataset.h can enhance the precision of classification,generalization performance and reduce the number of rule.The experiment demonstrates the effectiveness of the mentioned algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第33期174-176,共3页 Computer Engineering and Applications
关键词 数据挖掘 人工神经网络 决策树 data mining Neural Networks decision tree
  • 相关文献

参考文献8

  • 1GUO Qiang,P Zh.Neural networks for classificaion:a survey[J].IEEE Tran on system,man,and cybernetics-part C,2000,30(4):451-462.
  • 2TSUKIMOTO H.Extrcting rules from trained neural networks[J].IEEE Tran on Neural Networks,2000,11 (2):377-389.
  • 3SAFAVIN R R,LANDGREBE D.A survey of decision tree classifier methodology[J].IEEE Trans Syst,Man,Cybern,1991,21 (5):660-674.
  • 4IVANOVA I,KUBAT M.Initialization of neural networks by means of decision tree[J].Knowledge based system,1995,8:333-344.
  • 5ZHAO Q.Evolutionary design of neural network tree-integration of decision tree,neural network and GA[C]//IEEE Congress on Evolutionary Computation(CEC'2001),c2001:240-244.
  • 6周志华,葛翔,陈兆乾.构造性混合决策树[J].计算机学报,2001,24(10):1057-1063. 被引量:6
  • 7SHIN C K,et al.A hybrid approach of neural network and memory-based learning to data mining[J].IEEE Trans on Neural Networks,2000,11 (3):637-646.
  • 8QUINLAN I R.C4.5:programs for machine learning[M].San mateo,California:Morgan Kaufmann Publishers,1993.

二级参考文献6

  • 1He J Z,Proc IEEE INNSENNS International Joint Conference on Neural Networks,2000年,401页
  • 2Sun R,AI Magazine,1993年,14卷,2期,20页
  • 3Guo H,IEEE Trans Neural Networks,1992年,3卷,6期,923页
  • 4Li T,Proc Int Joint Conference on Neural Networks 3,1992年,329页
  • 5葛翔,周志华,陈兆乾.构造性归纳综述[J].计算机科学,1999,26(8):62-64. 被引量:1
  • 6周志华,陈兆乾,netra.nju.edu.cn,陈世福.基于域理论的自适应谐振神经网络分类器[J].软件学报,2000,11(5):667-672. 被引量:13

共引文献5

同被引文献38

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部