期刊文献+

改进的基于相关相似性的协同过滤推荐算法 被引量:2

An adaptive algorithm of collaborative filtering recommender based on correlation similarity
下载PDF
导出
摘要 分析了传统CF算法和基于项目评分的CF算法中存在的问题,对其相似性计算和推荐集选取方法进行了改进,并提出了一种优化的CF算法。实验结果表明,该算法同传统CF算法相比能显著提高推荐精度,同基于项目评分的CF算法相比能够有效减少计算复杂度。 On the basis of analysing the deficiencies in the traditional CF algorithm and the collaborative filtering recommendation algorithm based on item rating, some improvements on the similarity calculation and recommendation selection were made and an optimized CF algorithm is given. Experimental results show that this method can noticeably provide better recommendation results than traditional CF algorithms, and can efficiently reduce the complexity of computation compared with the CF recommendation algorithm based on item rating.
作者 赵智 冯卓楠
出处 《长春工业大学学报》 CAS 2006年第4期354-358,共5页 Journal of Changchun University of Technology
关键词 个性化推荐系统 协同过滤 相似性 推荐算法 平均绝对偏差 personalization recommendation system; collaborative filtering similarity recommendation algorithm MAE (Mean Absolute Error).
  • 相关文献

参考文献6

二级参考文献26

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献636

同被引文献13

  • 1来纯云,冯丽芳.ICU护士估测气管导管气囊压准确性的研究[J].解放军护理杂志,2004,21(6):23-24. 被引量:20
  • 2郑先荣,曹先彬.线性逐步遗忘协同过滤算法的研究[J].计算机工程,2007,33(6):72-73. 被引量:25
  • 3Gong Songiie, Cheng Guanghua. Mining User Interest Change for Improving Collaborative Filtering[C]//Intelligent Information Technology Application 2008. Second International Symposium. Volume 3. Dec. 2008:24-27.
  • 4Xia Weiwei, He Liang, Ren Lei, et al. A new collaborative filtering approach utilizing item's popularity[C]//Industrial Engineering and Engineering Management. IEEE International Conference, Dec. 2008 : 1480-1484.
  • 5Su Xiaoyuan, Khoshgoftaar T M, Greiner R. A Collaborative Filtering Algorithm Based on Variance Analysis of Attributes- Value Preference [C] // IEEE/WlC/ACM International Conference. Volume 1, Dec. 2008 : 633-639.
  • 6Dai Y, Ye Hongwu, Gong Songjie. Personalized Reeornmenda tion Algorithm Using User Demography Information. Knowledge Discovery and Data Mining[C]// Second International Workshop. Jan. 2009 : 100-103.
  • 7Gong Song-jie, Ye Hongwu. Combining Memory - Based and Model-Based Collaborative Filtering in Recommender System [C]//Circuits, Communications and Systems. Pacific-Asia Conference. 2009 : 690 693.
  • 8李聪,梁昌勇,董珂.基于项目类别相似性的协同过滤推荐算法[J].合肥工业大学学报(自然科学版),2008,31(3):360-363. 被引量:21
  • 9彭德巍,胡斌.一种基于用户特征和时间的协同过滤算法[J].武汉理工大学学报,2009,31(3):24-28. 被引量:27
  • 10王元明,熊伟.异常数据的检测方法[J].重庆工学院学报(自然科学版),2009,23(2):86-89. 被引量:9

引证文献2

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部