期刊文献+

基于计算机视觉技术的微钻刃面自动光学检测 被引量:14

Automatic Optical Inspection of Mini-Drill Blade Based on Computer Vision Technology
下载PDF
导出
摘要 为了实现微钻刃面尺寸和缺陷的自动光学检测,建立了影像检测系统并研究其图像处理算法.根据微钻刃面的特征,设计了专用的照明系统来获取清晰的、变形小的微钻刃面图像.采用改进的小核值相似区边缘提取算法对图像进行边缘提取,并对所提取的边缘采用基于空间矩的亚像素算法进行图像边缘的亚像素定位,然后采用直线和圆弧拟合等一系列算法对微钻刃面图像进行尺寸计算和缺陷检测.实验结果表明:自动光学检测方法的准确率达到了99.5%,微钻的检出精度达到了微米级,说明该方法能够满足微钻刃面尺寸测量和缺陷检测的要求. In order to realize the automatic optical inspection (AOI) of the dimensions and defects of mini-drill blades, an automatic image inspection system is proposed and the corresponding image processing algorithms are investigated. In the investigation, a special lighting system is first designed based on the characteristics of mini-drill blades to obtain clear blade images with little distortion. Next, the improved Small Univalue Segment Assimilating Nucleus edge extraction algorithm is adopted to extract the image edge. Then, the extracted edge is located by the subpixel edge location algorithm based on the spatial moments to obtain a precise Subpixel location. Finally, the algorithms, such as the line fitting and the circle fitting, are adopted to calculate the dimensions and to inspect the defects of the mini-drill blades. Experimental results demonstrate that the proposed AOI method is of an inspection accuracy of 99.5% and a dimension precision in the scale of micron, so it can meet the requirements of dimension measurement and defect inspection of mini-drill blades.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第11期55-59,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 粤港关键领域重点突破项目(2004A10403021)
关键词 计算机视觉 自动光学测量 边缘检测 亚像素 小核值相似区算法 computer vision automatic optical inspection edge detection subpixel Small Univalue Segment Assimilating Nucleus Aalgorithm
  • 相关文献

参考文献13

  • 1Hecht O,Dishon G.Automatic optical inspection (AOI)[C]// Proc Electronic Compon Conf.Las Vegas,NV:IEEE,1990:659-661.
  • 2Hong Ji-joong,Park Kyung-ja,Kim Kyung-gu.Parallel processing machine vision system for bare PCB inspection[C]// Proc Industrial Electronics Society conference.Aachen:IEEE Industrial Electronics Society Press,1998:1346-1350.
  • 3Scaman M E,Economikos L.Computer vision for automatic inspection of complex metal patterns on multichip modules (MCM-D)[J].IEEE Trans on Components,Packaging,and Manufacturing Technology,Part B:Advanced Packaging,1995,18(4):675-684.
  • 4Seaman M E,Economikos L,Lambright J.Computer vision for automatic inspection of a high density grid of pads on multi-chip modules (MCM-D)[J].IEEE Trans on Components,Packaging,and Manufacturing Technology,Part B:Advanced Packaging,1994,17 (3):291-299.
  • 5Cohen R,Dishon G.A dedicated multichip module automatic optical inspection system[C]//Electronic Manufacturing Technology Symposium on Competitive Manufacturing for the Next Decade.Washington,DC:IEEE,1990:51-55.
  • 6Park Tae-hyoung,Kim Hwa-jung.Path planning of automatic optical inspection machines for PCB assembly systems[C] // IEEE International Symposium on Computational Intelligence in Robotics and Automation.Espoo,Finland:IEEE Computer Society Press,2005:249 -254.
  • 7中国电子元件行业协会信息中心.2005板中国印制电路板(PCB)市场竞争研究报告[EB/OL].北京:中国电子元件行业协会,2006-05-20.http://www.ic-ceca.org.cn/yjbg/report.asp.
  • 8Raymond D W.Finding opens with optics[C] //Proc Test Conference.Washington,DC:IEEE Computer Society Press,1997:277.
  • 9Raymond D W,Haigh D F.Why automate optical inspection?[C]//Proc Test Conference.Washington,DC:IEEE Computer Society Press,1997:1033.
  • 10Zhou Dong-xiang,Liu Yun-hui,Cai Xuang-ping.An efficient and Robust corner detection algorithm[C]//Fifth World Congress on Intelligent Control and Automation.Hangzhou:IEEE,2004:4020-4024.

同被引文献89

引证文献14

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部