期刊文献+

一类五次代数曲线的图形分类

Graph Classification for a Class of Quintic Algebra Curves
下载PDF
导出
摘要 用平面动力系统定性分析方法和数学软件Mathematica对五次代数曲线的图形进行分类.首先建立一个与这类代数曲线相对应的平面动力系统,然后研究奇点的分布及性质,找出参数平面的分支曲线,再用Mathematica画出了代数曲线的图形,并完成了图形的分类,将这一类代数曲线的图分为了12类. The graph classification for a class of quintic algebra curves is carried out by means of the software Mathematica and the qualitative analysis method of planar dynamical system. In the classification, first, a planar dynamical system corresponding to the quintic algebra curves is constructed. Next, the distributions and properties of singular points are studied. Then, the bifurcation curves are given on the parametric plane. Finally, the graphs of the algebral curves are drawn by using the software Mathematica. Thus, the classification is completed, dividing the graphs into twelve types.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第11期109-113,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(10571063)
关键词 五次代数曲线 数学模型 图形分类 平面动力系统 定性分析 数学软件 quintic algebra curve mathematical model graph classification planar dynamical system qualitative analysis mathematical software
  • 相关文献

参考文献9

  • 1沈永欢 梁在中.实用数学手册[M].北京:科学出版社,2004..
  • 2Liu Zheng-rong,Hu Bambi,Li Ji-bin.Bifurcation sets and distributions of limit cycles in a Hamiltonian system approaching the pringipal deformation of a E4 field[J].International Journal of Bifurcation and Chaos,1995,5 (3):809-818.
  • 3Tang Min-ying,Hong Xiao-chun.Fourteen limit cyctes in a cubic Hamiltonian system with nine-order perturbed term[J].Chaos,Solitons and Fractals,2002,14:1 361-1369.
  • 4Liu Zheng-rong,Yang Zhi-yan,Jiang Tao.The same distributions of limit cycles in a five perturbed cubic Hamiltonian systems[J].International Journal of Bifurcation and Chaos,2003,13 (1):243-249.
  • 5Zhang Tong-hua,Han Mao-an,Zhang Hong.Prtubation from an asymmetric cubic Hamiltonian[J].J Math Anal Appl,2005,305:617-686.
  • 6Liu Zheng-rong,Qian Ti-fei,Li Ji-bin.Detection function method and its application to perturbed quintic Hamiltonian system[J].Chaos,Solitons and Fractals,2002,13:295-310.
  • 7Li Ji-bin.Hilbert's 16th problem and bifurcations of planar polynomial vector fields[J].International Journal of Bifurcation and Chaos,2003,13 (1):47-106.
  • 8Han Mao-an,Zhang Tong-hua,Zang Hong.On the number and distribution of limit cycles in a cubic system[J].International Journal of Bifurcation and Chaos,2004,14(12):4285-4292.
  • 9张止芬,丁同仁,黄文灶,等.微分方程定性理论[M].北京:科学出版社,2003.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部