期刊文献+

Synergistic effects of brain-derived neurotrophic factor and retinoic acid on inducing the differentiation of bone marrow stromal cells into neuron-like cells in adult rats in vitro

Synergistic effects of brain-derived neurotrophic factor and retinoic acid on inducing the differentiation of bone marrow stromal cells into neuron-like cells in adult rats in vitro
下载PDF
导出
摘要 BACKGROUND: Under induction of retinoic acid (RA), bone marrow stromal cells (BMSCs) can differentiate into nerve cells or neuron-like cells, which do not survive for a long time, so those are restricted to an application. Other neurotrophic factors can also differentiate into neuronal cells through inducing BMSCs; especially, brain-derived neurotrophic factor (BDNF) can delay natural death of neurons and play a key role in survival and growth of neurons. The combination of them is beneficial for differentiation of BMSCs. OBJECTIVE: To investigate the effects of BDNF combining with RA on inducing differentiation of BMSCs to nerve cells of adult rats and compare the results between common medium group and single BDNF group. DESIGN: Randomized controlled animal study SETTING: Department of Neurology, Affiliated Hospital of Xuzhou Medical College MATERIALS: The experiment was carried out in the Clinical Neurological Laboratory of Xuzhou Medical College from September 2003 to April 2005. A total of 24 SD rats, of either gender, 2 months old, weighing 130-150 g, were provided by Experimental Animal Center of Xuzhou Medical College [certification: SYXK (su) 2002-0038]. Materials and reagents: low-glucose DMEM medium, bovine serum, BDNF, RA, trypsin, separating medium of lymphocyte, monoclonal antibody of mouse-anti-nestin, neuro-specific enolase, glial fibrillary acidic protein (GFAP) antibody, SABC kit, and diaminobenzidine (DAB) color agent. All these mentioned above were mainly provided by SIGMA Company, GIBCO Company and Boshide Company. METHODS: Bone marrow of SD rats was selected for density gradient centrifugation. BMSCs were undertaken primary culture and subculture; and then, those cells were induced respectively in various mediums in total of 3 groups, including control group (primary culture), BDNF group (20 μg/L BDNF) and BDNF+RA group (20 μg/L BDNF plus 20 μg/L RA). On the 3^rd and the 7^th days after induction, BMSCs were stained immunocytochemically with nestin (sign of nerve stem cells), neuron-specific enolase (NSE, sign of diagnosing neurons) and GFAP (diagnosing astrocyte), and evaluated cellular property. MAIN OUTCOME MEASURES : Induction and differentiation in vitro of BMSCs in 3 groups RESULTS: (1) Induction and differentiation of BMSCs: Seven days after induction, cells having 2 or more apophyses were observed. Soma shaped like angle or erose form, which were similar to neurons and glial cells having strong refraction. (2) Results of immunocytochemical detection: Three days after induction, rate of positive cells in BDNF+RA group was higher than that in BDNF group and control group [(86.15±4.58)%, (65.43±4.23)%, (4.18±1.09)%, P 〈 0.01]. Seven days after induction, rate of positive cells was lower in BDNF group and BDNF+RA group than that in both groups at 3 days after induction [(31.12±3.18)%, (29.35±2.69)%, P 〈 0.01]; however, amounts of positive cells of NSE and GFAP were higher than those at 3 days after induction (P 〈 0.01); meanwhile, the amount in BDNF+RA group was remarkably higher than that in BDNF group (P 〈 0.01). CONCLUSION: Combination of BDNF and RA can cooperate differentiation of BMSCs into neurons and astrocyte, and the effect is superior to single usage of BDNF. BACKGROUND: Under induction of retinoic acid (RA), bone marrow stromal cells (BMSCs) can differentiate into nerve cells or neuron-like cells, which do not survive for a long time, so those are restricted to an application. Other neurotrophic factors can also differentiate into neuronal cells through inducing BMSCs; especially, brain-derived neurotrophic factor (BDNF) can delay natural death of neurons and play a key role in survival and growth of neurons. The combination of them is beneficial for differentiation of BMSCs. OBJECTIVE: To investigate the effects of BDNF combining with RA on inducing differentiation of BMSCs to nerve cells of adult rats and compare the results between common medium group and single BDNF group. DESIGN: Randomized controlled animal study SETTING: Department of Neurology, Affiliated Hospital of Xuzhou Medical College MATERIALS: The experiment was carried out in the Clinical Neurological Laboratory of Xuzhou Medical College from September 2003 to April 2005. A total of 24 SD rats, of either gender, 2 months old, weighing 130-150 g, were provided by Experimental Animal Center of Xuzhou Medical College [certification: SYXK (su) 2002-0038]. Materials and reagents: low-glucose DMEM medium, bovine serum, BDNF, RA, trypsin, separating medium of lymphocyte, monoclonal antibody of mouse-anti-nestin, neuro-specific enolase, glial fibrillary acidic protein (GFAP) antibody, SABC kit, and diaminobenzidine (DAB) color agent. All these mentioned above were mainly provided by SIGMA Company, GIBCO Company and Boshide Company. METHODS: Bone marrow of SD rats was selected for density gradient centrifugation. BMSCs were undertaken primary culture and subculture; and then, those cells were induced respectively in various mediums in total of 3 groups, including control group (primary culture), BDNF group (20 μg/L BDNF) and BDNF+RA group (20 μg/L BDNF plus 20 μg/L RA). On the 3^rd and the 7^th days after induction, BMSCs were stained immunocytochemically with nestin (sign of nerve stem cells), neuron-specific enolase (NSE, sign of diagnosing neurons) and GFAP (diagnosing astrocyte), and evaluated cellular property. MAIN OUTCOME MEASURES : Induction and differentiation in vitro of BMSCs in 3 groups RESULTS: (1) Induction and differentiation of BMSCs: Seven days after induction, cells having 2 or more apophyses were observed. Soma shaped like angle or erose form, which were similar to neurons and glial cells having strong refraction. (2) Results of immunocytochemical detection: Three days after induction, rate of positive cells in BDNF+RA group was higher than that in BDNF group and control group [(86.15±4.58)%, (65.43±4.23)%, (4.18±1.09)%, P 〈 0.01]. Seven days after induction, rate of positive cells was lower in BDNF group and BDNF+RA group than that in both groups at 3 days after induction [(31.12±3.18)%, (29.35±2.69)%, P 〈 0.01]; however, amounts of positive cells of NSE and GFAP were higher than those at 3 days after induction (P 〈 0.01); meanwhile, the amount in BDNF+RA group was remarkably higher than that in BDNF group (P 〈 0.01). CONCLUSION: Combination of BDNF and RA can cooperate differentiation of BMSCs into neurons and astrocyte, and the effect is superior to single usage of BDNF.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第4期301-303,共3页 中国神经再生研究(英文版)
  • 相关文献

参考文献1

二级参考文献10

  • 1[1]Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol, 1966, 16(3): 381
  • 2[2]Pereria RF, O'Hara MD, Laptev AV et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA, 1998,95(3):1142
  • 3[3]Nilsson SK, Dooner MS, Weier HU et al. Cells capable of bone production engraft from whole bone marrow transplants in nonablated mice. J Exp Med, 1999,189(4):729
  • 4[4]Woodbury D, Schwarz EJ, Prockop DJ et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000,61(4):364
  • 5[5]Azzi SA, Stokes DG, Augelli CD et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc Natl Acad Sci USA, 1998, 95(7):3908
  • 6[6]Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocyte after injuction into nernatal mouse brains. Proc Natl Acad Sci USA, 1999,96(19):10711
  • 7[7]Mezey E, Chandross KJ, Harta G et al. Turning blood into brain cells bearing neuronal antigens generated in vivo from bone marrow. Science, 2000, 290(5497):1779
  • 8[8]Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al. Adult bone marrow stromal cells ifferentiate into neural cells in vitro. Exp Neurol, 2000, 164(2): 247
  • 9[9]Brazalton TR, Rossi FM, Keshet GI et al. From marrow to brain: expression of neuronal phenotypes in adult mice. Science, 2000,290(5497):1775
  • 10[10]Mahmood Asim, Lu DY, Li Y et al. Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J Neurosurg, 2001,94:589

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部