期刊文献+

区间时变细胞神经网络的全局鲁棒指数稳定性 被引量:3

Global robust exponential stability of interval cellular neural networks with time-varying delays
下载PDF
导出
摘要 研究了一类区间时变扰动、变时滞细胞神经网络的全局鲁棒指数稳定性问题.利用Leibniz-Newton公式对原系统进行模型变换,并分析了变换模型和原始模型的等价性.基于变换模型,运用线性矩阵不等式的方法,通过选择适当的Lyapunov-Krasovskii泛函,推导了该系统全局鲁棒指数稳定的时滞相关的充分条件.通过数值实例将所得结果与前人的结果相比较,表明了本文所提出的稳定判据具有更低的保守性. The global robust exponential stability (GRES) of a class of interval cellular neural networks with time- varying delays is studied in this paper, A transformation is made on original system by the Leibniz-Newton formula, an analysis is also given to show that those two systems are equivalent. Based on the transformed model, applying Lyapunov- Krasovskii stability theorem for functional differential equations and the linear matrix inequality (LMI) approach, some delay-dependent criteria are respectively presented for the existence, uniqueness, and global robust exponential stability of the equilibrium for the interval delayed neural networks, The criteria given here are less conservative than those provided in the earlier references, Finally, numerical example is included to demonstrate the effectiveness and superiority of the proposed results.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第5期724-729,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(69874008).
关键词 细胞神经网络 变时滞 全局指数稳定 鲁棒性 线性矩阵不等式(LMI) interval cellular neural networks time-varying delay global exponential stability robust linear matrix inequality(LMI)
  • 相关文献

参考文献13

  • 1CHUA L O,YANG L.Cellular neural networks:theory and applications[J].IEEE Trans on Circuits Systems I,1988,35(10):1257 -1290.
  • 2GOPALSAMY K,HE X.Delay-independent stability in bidirectional associative memory networks[J].IEEE Trans on Neural Networks,1994,5(6):998-1002.
  • 3LIAO X,CHEN G,SANCHEZ E.Delay-dependent exponential stability analysis of delayed neural networks:an LMI approach[J].Neural Networks,2002,15(7):855-866.
  • 4ZHANG Q,MA R,WANG C,et al.On the global stability of delayed neural networks[J].IEEE Trans on Automatic Control,2003,48(5):794-797.
  • 5ZHOU D,ZHANG L,CAO J.On global exponential stability of cellular neural networks with Lipschitz-continuous activation function and variable delays[J].Appl Math Comput,2004,151(2):379-392.
  • 6ZHOU D,CAO J.Globally exponential stability conditions for cellular neural networks with time-varying delays[J].Appl Math Comput,2002,131(2-3):487-496.
  • 7ARIK S.An analysis of exponential stability of delayed neural networks with time varying delays[J].Neural Networks,2004,17(7):1027-1031.
  • 8YUCEL E,ARIK S.New exponential stability results for delayed neural networks with time-varying delays[J].Physical D,2004,191(3-4):314-332.
  • 9ZHANG Q,WEI X,XU J.An analysis on the global asymptotic stability for neural networks with variable delays[J].Phys LettA,2004,328(2-3):163-169.
  • 10ZHANG Q,WEI X,XU J.Delay-dependent exponential stability of cellular neural networks with time-varying delays[J].Chaos,Solitons& Fractals,2005,23(4):1363-1369.

同被引文献23

  • 1赵丹丹,王林山.变时滞区间细胞神经网络的全局鲁棒稳定性[J].生物数学学报,2006,21(4):557-563. 被引量:5
  • 2ZHANG H G, WANG Y C. Stability analysis of Markovian jumping stochastic Cohen-Grossberg neural networks with mixed time delays[J]. IEEE Transactions on Neural Networks, 2008, 19(2): 366- 370.
  • 3ZHANG H G, WANG Z S, LIU D R. Global asymptotic stability of recurrent neural networks with multiple time-varying delays[J]. IEEE Transactions on Neural Networks, 2008, 19(5): 855 - 873.
  • 4ZHANG H G, WANG Z S, LIU D R. Robust exponential stability of cellular neural networks with multiple time varying delays[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2007, 54(8): 730 - 734.
  • 5WANG Z S, ZHANG H G, YU W. Robust exponential stability analysis of neural networks with multiple time delays[J]. Neurocomputing, 2007, 70(13/15): 2534 - 2543.
  • 6ZHAO Z J. Global exponential robust periodicity and stability of interval neural networks with both variable and unbounded delays[J]. Chaos, Solitons and Fractals, 2008, 36(1): 91 - 97.
  • 7LI C D, LIAO X F. Global robust stability criteria for interval delayed neural networks via an LMI approach[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2006, 53(9): 901 - 905.
  • 8SHEN T, ZHANG Y. Improved global robust stability criteria for delayed neural networks [J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2007, 54(8): 715 - 719.
  • 9CAO J D, WANG J. Global asymptotic and robust stability of recurrent neural networks with time delays[J]. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2005, 52(2): 417 - 426.
  • 10OZCAN N, ARIK S. Global robust stability analysis of neural networks with multiple time delays[J]. 1EEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2006, 53(1): 166 - 176.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部