期刊文献+

快速增量加权支持向量机预测证券指数 被引量:4

Fast incremental weighted support vector machines for predicating stock index
下载PDF
导出
摘要 传统支持向量机是对小样本提出,对于大样本会出现训练速度慢、内存占用多等问题.并且不具有增量学习性能.而常用的增量学习方法又会出现局部极小等问题.本文阐述了一种改进的支持向量机算法(快速增量加权支持向量机算法)用于证券指数预测.该算法先对指数样本做相空间重构,再分解成若干个工作子集,针对样本重要程度给出不同权重构建预测模型.实验分析表明,在泛化精度保持略好情况下,训练速度明显提高. Traditional support vector machine (SVM) is effective only for small size of samples.When the size of sample is large, it exhibits a low training speed and a large required memory. Thus, it is not suitable for increment learning. Furthermore, traditional increment learning algorithms such as neural network have local minima only. To tackle this problem, a fast incremental weighted support vector machines for predicting the stock index is put forward. The algorithm model reconstructs the phase for the index, and then decomposes the sample space into subsets and gives different weights to them. Experimental results show that modified algorithm raises the training speed while maintaining the same precision.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第5期805-809,共5页 Control Theory & Applications
基金 中国博士后科学基金资助项目(2005037582) 广东省自然科学基金资助项目(05200300).
关键词 支持向量机 增量学习 证券指数预测 相空间重构 support vector machine incremental learning stock index phase-space reconstruction
  • 相关文献

参考文献15

  • 1VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Springer,1999.
  • 2萧嵘,王继成,孙正兴,张福炎.一种SVM增量学习算法α-ISVM[J].软件学报,2001,12(12):1818-1824. 被引量:85
  • 3RUPING S.Incremental learning with support vector machines[C]//Proc of Int Conf on Data Mining.San Jose:IEEE Computer Science Press,2001:641-642.
  • 4FUNG G,MANGASARIAN O L.Incremental support vector machine classification[C]//Proc of the Second SIAM Int Conf on Date Mining SDM.Arlington,Vimginia:IEEE Computer Science Press,2002:135-145.
  • 5XIAO R,WANG J,ZHANG F.An approach to incremental SVM learning algorism[C]// Proc of the 12th Int Conference on Tools with Artificial Intelligence.New York:IEEE Computer Science Press,2000:268-273.
  • 6FRANCIS E H T,CAO L J.Modified support vector machines in financial time series forecasting[J].Neural Computing,2002,48:847-861.
  • 7BOSER B E,GUYON I M,VAPNILK V N.A training algorithm for optimal margin classifiers[C] //Proc of the Fifth Annual Workshop on Computational Learning Theroy.Pittsburgh,PA:ACM Press,1992:144-152.
  • 8OSUNA E,FREUND R,GIROSI F.An improved training algorithm for support vector machines[C]//Proc of Int Conf on Newral and Signal Procossing.New York:IEEE Computer Science Press,1997:276-285.
  • 9OSUNA E,FREUND R,GIROSI F.Suppport Vector Machines:Training and Application[M].Cambridge,MA:Massachusetts Institute of Technology,AILab,1997.
  • 10JOACHIMS T.Making large-scale support vector machines learning practical[C]//Advances in Kernel Methods-Support Vector Learning1999.Cambridge,MA:MIT Press,1999:169-184.

二级参考文献6

  • 1Vapnik V N. Statistical learning theory [M]. New York:Wiley,1998
  • 2Vapnik V N. The Nature of Statistical Learning Theory [M]. New York :Springer, 1999
  • 3Cristianini N, Tayor J S. An introduction to support vector machines and other kernel-based learning methods [M]. New York:Cambridge Press, 2000
  • 4Tay F E H,Cao L J. Modified support vector machines in financial time series forecasting [J]. Neurocomputing, 2002,48: 847~861
  • 5Tay F E H,Cao L J. Application of support vector machines in financial time series forecasting [J]. omega, 2001,29: 309~317
  • 6Christopher J.C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition[J] 1998,Data Mining and Knowledge Discovery(2):121~167

共引文献86

同被引文献36

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部