期刊文献+

摄动离散矩阵Lyapunov方程解的估计 被引量:5

On the estimation of solutions to perturbed discrete matrix Lvapunov equations
下载PDF
导出
摘要 研究摄动离散矩阵Lyapunov方程解的估计问题,利用矩阵运算性质及Lyapunov稳定性理论,给出在结构不确定性假设下方程解的存在条件及解的上下界估计,估计结果由一个线性矩阵不等式(LMI)和两个矩阵代数Riccati方程确定.针对几种不确定性假设,进一步给出矩阵代数Riccati方程的具体形式.最后通过一个算例说明了所得结果的有效性. The estimation of the solution to the perturbed discrete matrix Lyapunov equation is stuclled, lne existence condition and upper and lower bounds estimation of the solution to the equation under the structured uncertainty assumption are presented by applying the operational property of matrix and Lyapunov stability theory, the estimation is then determined by a linear matrix inequality (LMI) and two matrix algebra Riccati equations. The concrete form of matrix algebra Riccati equations are also given for some uncertainty assumptions. Finally, the effectiveness of above results is shown by an example.
作者 陈东彦 侯玲
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第5期830-832,共3页 Control Theory & Applications
基金 国家自然科学基金资助项目(10471031).
关键词 离散矩阵Lyapunov方程 不确定性 矩阵代数Riccati方程 线性矩阵不等式 discrete matrix Lyapunov equation uncertainty matrix algebra Riccati equation linear matrix inequality
  • 相关文献

参考文献5

  • 1XU J H,SKELTON R E,ZHU G.Upper and lower covariance bounds for perturbed linear systems[J].IEEE Trans on Automatic Control,1990,35(8):944-948.
  • 2王子栋,郭治.摄动离散LYAPUNOV方程解的上下界估计[J].自动化学报,1999,25(1):117-121. 被引量:3
  • 3WONHAM W M.Linear Multivariable Control:A Geometric Approach[M].New York:Springer-Verlag,1979.
  • 4PRTERSEN I R,HOLLOT C V.A Riccati equation approach to the stabilization of uncertain linear systems[J].Automatica,1986,22(2):397-411.
  • 5ZHOU K,KHARGONEKAR.Stability robustness bounds for linear state-space models with structured uncertainty[J].IEEE Trans on Automatic Control,1987,32(7):621-623.

共引文献2

同被引文献30

  • 1王春,陈东彦,王影,刘彦慧,于玉琴.摄动离散Riccati矩阵方程解上界估计[J].辽宁工程技术大学学报(自然科学版),2012,31(6):905-908. 被引量:1
  • 2王德玉,夏冰,陈东彦.离散时间代数Riccati方程解矩阵的上下界[J].哈尔滨理工大学学报,2005,10(6):28-31. 被引量:3
  • 3戚国庆,张蛟,李显峰.随机穿越特征指标下的满意激光回波问题[J].激光技术,2007,31(1):109-112. 被引量:5
  • 4GUO Z. Opportunity-awaiting control--One new study field in stochastic control theory[C] //Proceedings of the 4th International Conference on Control and Automation. Montreal, Canada:IEEE, 2003:340 - 344.
  • 5WU Q, GUO Z. Opportunity awaiting control for linear discrete system[C] //Proceedings of the 24th Chinese Control Conference. Guangzhou, China: Printing House of South China University of Technology, 2005:15 - 18.
  • 6GUO Z, WU Q, BOY M. Opportunitiy-awaiting control strategy on elliptic objective area[C]//Proceedings of 2004 IASTED International Conference on Intelligent System Control. Anahein, CA: Acta Press, 2004:180 - 186.
  • 7JUN W, GUO Z. The Estimation for the distribution of residence time under interval objective domain[C]//Proceedings of 2008 China Control and Decision Conference. Shenyang, China: Printing House of China Northeast University, 2008:5154 - 5158.
  • 8TAKASHI S, TAKAO E Multiobjective control design via successive over-bounding of quadratic terms[C]//Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, Australia: IEEE, 2000: 2763 - 2768.
  • 9ARASH H, JONATHAN H, STEPHEN B. A path-following method for solving BMI problems in control[C] //Proceedings of the 1999 American Control Conference. San Diego, CA, USA: IEEE, 1999: 1385 - 1389.
  • 10Richard Davies,Peng Shi,Ron Wiltshire,New upper solution bounds of the discrete algebratc Riccati matrix equation[J] ,Computional and Applied Mathematics,2008(213):307-315.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部