摘要
针对一类满足扇形界条件的不确定模糊模型描述的非线性系统,提出一种输出反馈鲁棒预测控制方法.该方法将鲁棒预测控制的Min-Max优化问题转化为具有LMI约束的线性目标最小化问题,并且不需系统状态完全可测,仅仅利用系统测量输出和不可测状态的界限值来确定保证闭环系统鲁棒稳定的输出反馈控制器.仿真实验证明了该方法的有效性.
An output feedback robust predictive control approach is proposed based on a class of uncertain fuzzy models satisfying the sector bound condition for nonlinear systems, Firstly, the Min-Max optimization problem of robust predictive control is converted into linear objective minimization problem with linear matrix inequality (LMI) constrains in this approach. The system states do not need to be exactly measurable, only the measurement outputs and the extreme values of the unmeasured states are used to determine the output feedback controller. Robust stability of the closed-loop system is demonstrated. Finally, simulation results show that the proposed approach is an effective control strategy with excellent tracing characteristics and strong robustness.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2006年第5期768-772,778,共6页
Control Theory & Applications
基金
国家自然科学基金资助项目(60421002).
关键词
模糊模型
非线性系统
输出反馈
线性矩阵不等式
预测控制
fuzzy model
nonlinear systems
output feedback
linear matrix inequality (LMI)
predictive control