摘要
为了避免近似解析解带来的误差,文中利用拉格朗日方程,建立了可完整描述三线摆运动的微分方程,并利用数值分析方法来求解方程。最后通过算例分析了转动惯量与摆动周期的关系曲线以及摆盘、摆线尺寸对测量结果的影响。
In order to avoid the error caused by those proximate analytical solutions, this paper presents the differential equation, by using Lagrange equation, for completely describing three-line pendulum movement, and makes advantage of computational mathematics to solve the equation. Finally, through conducting some numerical examples, it analyzes the relative curve of the moment of inertia in respect to oscillation period, and the measurement solutions to the diameters of dish and tile lengths of lines.
出处
《弹箭与制导学报》
CSCD
北大核心
2006年第4期362-364,共3页
Journal of Projectiles,Rockets,Missiles and Guidance
关键词
对称式三线摆
转动惯量
摆动周期
拉格朗日方程
symmetrical three-line pendulum
moment of inertia
oscillation period
Lagrange equation