期刊文献+

基于混合神经网络的主动队列管理算法

Research of active queue management algorithm based on mixed neural network
下载PDF
导出
摘要 针对高速互联网中拥塞控制的问题,在主动队列管理算法模型基础上,提出了一种基于混合pi-sigma神经网络的动态管理机制.其模型可以方便地在线修正前提参数(隶属函数)和结论参数,适合网络系统拥塞预测和控制.仿真表明,该算法能够保证缓存器中队列长度的稳定性,而且在网络突发流量较大时,在短时间间隔内可以使流量的抖动变得平缓,对网络动态的、不精确的、突发性的环境具有较强的自适应能力. On the basis of the active queue management algorithm model, a dynamic management system is presented based on mixed pi-sigma neural network to solve the congestion problem in high-speed intemet network. The model can modify premise parameters ( subject functions) and conclusion parameters on line conveniently, suitable for congestion forecast and control of the network system. Simulation shows that this algorithm can ensure the stability of queue length in buffer storage, and make the flux fluctuation become mild in short time interval when the network burst flux happens. This algorithm possesses strong adaptation in dynamic, imprecise and sudden environment.
出处 《应用科技》 CAS 2006年第12期16-19,共4页 Applied Science and Technology
关键词 主动队列管理(AQM) 拥塞控制 混合神经网络 预测控制 active queue management( AQM) congestion control mixed neural network forecast control
  • 相关文献

参考文献5

  • 1FLOYD S, JACOBSON V. Random early detection gateways for congestion avoidance [ J ]. IEEE/Transactions on ACM Networking, 1993,1 (4) : 397 - 413.
  • 2WYNNE H, IRENE M Y W. Current research in the conceptual design of mechanical products[ J ]. Computer Aided Design, 1998,30(5) :377 - 389.
  • 3孔金生,赵长伟,万百五.网络拥塞的智能化适应控制方法[J].系统工程与电子技术,2005,27(7):1301-1303. 被引量:3
  • 4熊乃学,谭连生,杨燕.一种新的基于BP神经网络的拥塞控制算法[J].计算机工程,2004,30(24):35-36. 被引量:5
  • 5王世同.神经模糊系统及其应用[M].北京:北京航空航天大学出版社,1998.

二级参考文献15

  • 1Pugh A C,Tan Liansheng. A Generalized Chain-scatuering Representation and Its Algebraic System Properties [J]. IEEE Transactions on Automatic Control, 2000, 45(5): 1002-1007
  • 2Cavendish D. Proportional Rate-based Congestion Control Under Long Propagation Delay[J]. Int. J. Comm. Systems, 1995, (8): 79-89
  • 3Mishra P P, Kanakia H. A Hop by Hop Rate Based Congestion Control Scheme. In Proc. ACM SIGCOMM'92, 1992: 112-123
  • 4Zhang H, Yang O W, Mouftah H. A Hop-by-hop Flow Controller for a Virtual Path. Computer Nelworks, 2000, 32: 99-119
  • 5Benmohamed L, Meekov S. M. Feedback Control of Congestion in Packet Switching Networks: The Case of a Single Congested Node.IEEE/ACM Transactions on Networking, 1993,1:693-707
  • 6Hu Yinong, Chen Youping, Hu Wenbin, at al. A Learning Algorithm Based on the Neural Network Model and Its Application in Fault Diagnosis. Journal of Huazhong University of science and Technology,1995, 23(2): 30-34
  • 7Aweya J, Montuno D Y,Zhang Qijun et al. Multi-step Neural Predictive Techniques for Congestion Control Part Ⅰ: Prediction and Control Models. International Journal of Parallel and Distributed Systems and Networks, 2000,3( 1 ): 1-8
  • 8Chen T P, Chen H,Liu R W. Approximation Capacity in Cnk by Multi -layer Feed-forward Netvorks and Related Problems.IEEE Transactions on Neural Networks, 1995,6:25-30
  • 9Tanenbaum A S. Computer Networks[M]. 3rd ed., Prentice Hall, Inc., 1996.
  • 10Peterson L L, Davie B S. Computer Networks: Asystem Approach[M]. Morgan Kaufamann Publishers, 2001.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部