期刊文献+

基于优化拟形的航空发动机控制器降阶方法 被引量:1

Model reduction method based on optimization shaping for aero-engine controller
下载PDF
导出
摘要 提出了一种基于优化输出拟形的航空发动机多变量控制器降阶方法,并以LQG/LTR控制器降阶为例,成功地将原控制器从8阶降为3阶。首先将控制器分为积分环节部分和稳定子系统部分,采用输出拟形的方法用低阶系统去逼近稳定子系统使二者具有相近的阶跃响应,利用遗传算法优化出低阶系统的参数,将低阶系统和分离出来的积分环节合并后即得到降阶后的控制器。与采用平衡截取Schur降阶方法比较,本方法可将系统阶次降得更低并取得更好的动态响应效果。 The model reduction method for aero-engine controller based on the optimization output shaping is presented in this paper. Using the LQG/LTR controller as an exampie, the 8^th order LQG/LTR controller is successfully reduced to a 3^th order system with this method. First the controller is divided into the integral part and the stable part. A lower order system is used to approach the stable part. With the optimization output shaping meth od, the lower order system parameters can be calculated using genetic algorithm (GA). Then the step response of them is very close to each other. At last, combining the optimized lower order system with the separated integral part, the reduced order controller can be obtained. Compared with the balanced truncation Schur model reduction method, this method can.make the system with lower order and get better dynamic performance.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2006年第6期1103-1108,共6页 Journal of Aerospace Power
基金 国家自然科学基金资助(50576033) 航空科学基金资助(04C52019)
关键词 航空 航天推进系统 航空发动机 模型降阶 输出拟形 遗传算法 优化 aerospace propulsion system aero engine model reduction output shaping genetic algorithm optimization
  • 相关文献

参考文献13

  • 1Moore B C.Principal component analysis in linear systems:Controllability,observability and model reduction[J].IEEE Trans.Automat.Contr.,198l,AC-26(1):17-31.
  • 2Safonov M G,Chiang R Y.A schur method for balanced truncation model reduction[J].IEEE,Trans.Automat.Contr.,1989,AC-34(7):729-733.
  • 3Tatjana,Stykel.Gramian-based model reduction for descriptor systems[J].Mathematics of Control,Signals,and Systems,2004,16:297-319.
  • 4Fuchen Han,Taofang Hai.Nonconvex stochastic optimization for model reduction[J].Journal of Global Optimization,2002,23:359-372.
  • 5Diab M,Liu W Q,Sreeram V.Optimal model reduction with a frequency weighted extension[J].Dynamics and Control,2000,10:255-276.
  • 6Xie Li-hua,Zhang Ci-shen,Li Luo-wen.A gradient flow approach to optimal model reduction of discrete-time periodic systems[J].Journal of Global Optimization,2002,23:373-399.
  • 7杨刚.多变量鲁棒控制在航空发动机中的应用研究与实验验证[R].南京:南京航空航天大学,2004.
  • 8杨刚,孙健国.Reduced Order H_∞/LTR Method for Aeroengine Control System[J].Chinese Journal of Aeronautics,2004,17(3):129-135. 被引量:5
  • 9Nagar S K,Singh S K.An algorithmic approach for system decomposition and balanced realized model reduction[J].Journal of the Franklin Institute,2004,341:615-630.
  • 10Mukherjeea S,Satakshib,Mittal R C.Model order reduction using response-matching technique[J].Journal of the Franklin Institute,2005,342:503-519.

二级参考文献24

  • 1张明君,张化光.基于遗传算法优化的神经网络PID控制器[J].吉林大学学报(工学版),2005,35(1):91-96. 被引量:33
  • 2[3]Han K C, Hsia T C. On reducing compensator bandwidth of LQG/LTR control: an H∞ optimization approach [A]. ACC[C]. 1990. 924-929.
  • 3[4]Safonov M G, Chiang R Y. A Schur method for balanced model reduction [J]. IEEE Trans on Automat Contr, 1989,AC-34(7):729-733.
  • 4[5]Moore B C. Principal component analysis in linear systems: controllability,observability, and model reduction [J]. IEEE Trans on Automat Contr,1981,AC-26(1):17-31.
  • 5[6]Shrider A, Geroger J C, Xin Z, et al. H∞ control design for a jet engine [R]. AIAA-98-3753,1998.
  • 6[7]Edmunds J M. Control system design and analysis using closed-loop Nyquist and Bode arrays [J]. IJC,1979,30(5):773-802.
  • 7[2]Chen B M, Saberi A,Sannuti P. A new stable compensator design for exact and approximate loop transfer recovery [J]. Automatica, 1991,27(2): 257-280.
  • 8GAMBARDELLA L M. MASTROLILLI M. RIZZOLI A E, ZAFFALON M. An optimization methodology for intermodal terminal management[J]. Journal of Intelligent Manufacturing, 2001,12(5) :521 -534.
  • 9LAM H K, FRANK H, PETER K S. Design and stability analysis of fuzzy model-based nonlinear controller for nonlinear systems using genetic algorithm [J]. IEEE Trans on Fuzzy Systems,2003,33(2) :250-257.
  • 10CHEN Shyiming, HUANG Chungming. Generating weighted fuzzy rules from relational database systems for estimating null values using genetic algorithms[J]. IEEE Trans on Fuzzy Systems,2003,11(4) :495-506.

共引文献105

同被引文献8

  • 1孟庆松.高阶系统的奇异摄动模型的平衡降阶[J].自动化技术与应用,2006,25(5):13-15. 被引量:1
  • 2Moore B C. Principal component analysis in linear systems: controllability, observability and model reduction[J]. IEEE Trans Automat Control, 1981,AC-26(1):17-31.
  • 3Safonov M G, Chiang R Y. A schur method for balanced-truncation model reduction[J]. IEEE Trans Automat Control, 1989, AC-34 (7) : 729-733.
  • 4Tatjana S. Balanced truncation model reduction for semidlscretized stokes equation[J]. Linear Algebra and Its Applications, 2006, 415(2-3): 262-289.
  • 5Glover K. All optimal hankel-norm approximations of linear multivariable systems and their L∞-errors bounds[J]. Internat J Control, 1984, 39(6): 1115- 1193.
  • 6Regalia P A, Mboup M. An equivalence between rational H2and Hankel-norm approximations[J]. Systems & Control Letters, 1995, 24 (3) : 167-172.
  • 7Lee T T, Wang F Y, Newell R B. Robust model-order reduction of complex biological processes[J]. Journal of Process Control, 2002, 12(7): 807-821.
  • 8冯正平,孙健国,黄金泉,蔡红武.一种建立航空发动机状态变量模型的新方法[J].航空动力学报,1998,13(4):435-438. 被引量:57

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部