期刊文献+

非平稳环境下混沌信号的小波去噪方法 被引量:1

Noise reduction for chaos signal on wavelet in non-stationary environment
下载PDF
导出
摘要 针对传统的去噪方法对混沌信号除噪的盲目性,及往往仅对平稳环境或缓慢变化的噪声有效的局限性,本文提出根据信号与噪声在小波域的分布特性及信号和噪声的模极大在细尺度下收敛的横坐标点来检测信号的奇异性,以分形维树理论为依据决定阈值,得到噪声在小波域中的位置以及小波系数大小实现去噪。实验结果证明此法有效可行。 Traditional method for noise reduction of chaos signal is objectless and limited, since it is usually only effective for the noise in stationary environment or istics of signal and noise in wavelet domain, the signal changes slowly. According to the distribution character- singularity is detected by the abscissa point converged by maximum mould of signal and noise in minute scale. The threshold is determined according to the fractal di- mensions theory, the position of noise in wavelet domain and the wavelet coefficient are obtained for realizing noise reduction. Simulation result shows that this algorithm is effective.
作者 赵颖 孙鹏勇
出处 《电光与控制》 北大核心 2006年第6期60-63,共4页 Electronics Optics & Control
关键词 非平稳环境 混沌信号 离散小波变换 分形维数 non - stationary environment chaos signal discrete wavelet transform fractal dimensions
  • 相关文献

参考文献8

  • 1KOSTELICH E J,SCHREIBER J.Using a computer to solve problem in physics[J].Physi.Rev.E,Proceedings of the IEEE,1993,48(3):1752-1763.
  • 2SAUER J.Acoustic noise reduction based on delay embeded theory[C]//Physi.D.Science in China,1992,58:193-201.
  • 3BROOMHEAD D S.An algorithm study of separating chaotic communication[C]//Physi.D,Digital Image Processing.1995,80:413.
  • 4马丽萍,石炎福,余华瑞.含噪声混沌信号的小波去噪方法研究[J].信号处理,2002,18(1):83-87. 被引量:30
  • 5何坤,李健,乔强,周激流.非平稳环境下基于小波变换的信号去噪[J].信号处理,2005,21(3):244-248. 被引量:6
  • 6Stephane Mallat 著.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 7[法]马拉特(Mallat.s)著.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2002.
  • 8张贤达,保铮.非平稳信号处理分析[M].北京:国防工业出版社,1998.

二级参考文献12

  • 1S. Boll. Reduction of acoustic noise in speech using spectral subtraction[J]. IEEE Transactions on Acoustics,Speech, and Signal processing. 1979(2):112-120.
  • 2M. Berouti, R. Schwartz, J. Makhoul. Enhancement of speech corrupted by acoustic noise[J]. Proc. IEEEI CASSP, Washington, DC, Apr. 1979; 208-211.
  • 3P. Lockwood, J. Boudy. Experiments with a nonlinear spectral sub tractor (NNS), hidden Markov models and projection for robust recognition in cars[J]. Speech Communication. 1992; 11; 215-228.
  • 4Boh Lira Sire, Yit Chow Tong etc. A parametric formulation of the generalized spectral subtraction method[J]. IEEE Transaction on Speech and Audio Processing. 1988; 6(4); 328-337.
  • 5I. Cohen, B. Berdugo. Speech enhancement for non-stationary noise environments[J]. Signal Processig,2001; 81: 2403-2418.
  • 6R. Martin. Noise power spectral density estimation based on optimal smoothing and minimum Statistics[J]. IEEE.Transactions on Speech and Audio Processing. 2001;9(5):504-512.
  • 7姜建东,陈进,屈梁生.自仿射信号分维数估计算法的改进[J].信号处理,1999,15(1):54-59. 被引量:3
  • 8徐科,徐金梧.一种新的基于小波变换的白噪声消除方法[J].电子科学学刊,1999,21(5):706-709. 被引量:26
  • 9王博,潘泉,张洪才,戴冠中.基于子波分解的信号滤波算法[J].电子学报,1999,27(11):71-73. 被引量:22
  • 10李明,吴艳.基于子波变换阈值决策的非稳信号去噪[J].信号处理,2000,16(2):112-115. 被引量:9

共引文献34

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部