期刊文献+

小波变换技术在音频压缩中的应用

Application of Wavelet Transform in Audio Compression
下载PDF
导出
摘要 小波(W avelet)变换是当前信息处理领域中发展非常迅速的新技术,它同时具有理论深刻和应用广泛的双重意义。由于小波变换具有传统的DCT正交变换的能量紧致性,同时还具有与人类视听觉系统很相似的特性,因此在音视频压缩领域受到广泛关注。Haar小波是小波函数簇中的一个基本函数,应用于音频信息压缩,不仅可以获得较高的压缩比,而且压缩后又能有效保留原始音频信息的状态特征参数,因此为进一步高效处理音频信息提供了一种可行的方案。 As one of the fast developing new techniques in the present information processing field, wavelet transform is of great importance both in theory and application. It has aroused broad concern in the field of audio - video compression for the energy compactness of its traditional DCT orthogonal transform. By applying Haar wavelet to the compression of audio information, we can not only obtain higher compression ratio but also reserve effectively the parameters of the state and the characteristics of the original audio information. So, it provides a practical solu- tion for the further processing of audio information.
作者 郭兴吉
出处 《绵阳师范学院学报》 2006年第5期110-112,共3页 Journal of Mianyang Teachers' College
关键词 小波变换 HAAR小波 音频压缩 重构因子 wavelet transform Haar wavelet audio - compression reconstruction factors
  • 相关文献

参考文献2

二级参考文献18

  • 1[1]Zhu, W.W., Xiong, Z.X., Zhang, Y.Q. Multiresolution watermarking for image and video. IEEE Transactions on Circuits and Systems for Technology, 1999,9(4):545~549.
  • 2[2]Wang, H-J.M, Su, P-C., Kuo, C-C.J. Wavelet-Based digital image watermarking. Optics Express, 1998,3(12):491~496.
  • 3[3]Swanson, M., Kobayashi, M., Tewfik, A. Multimedia data embedding and watermarking technologies. Proceedings of the IEEE, 1998,86(6):1064~1087.
  • 4[4]Wolfgang, R., Podilchuk, C., Delp, E. Perpetual watermarks for digital images and video. Proceedings of the IEEE, 1999,87(7): 1108~1126.
  • 5[5]Delaigle, J., Vleechouwer, C., Macq, B. Watermarking algorithm based on a human visual model. Signal Processing, 1998,66(3): 319~335.
  • 6[6]Podilchuk, C., Zeng, W. Image-Adaptive watermarking using visual models. IEEE Journal of Selected Areas on Communications, 1998,16(4):525~539.
  • 7[7]Shapiro, J. M. Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 1993, 41(12):3445~3462.
  • 8[8]Zou, H., Tewfik, H. Discrete orthogonal M-Band wavelet decompositions. In: Proceedings of the IEEE 1992 International Conferences on Accoustics, Speech, and Signal Processing. San Francisco: IEEE Signal Processing Society, 1992. 605~ 608.
  • 9[9]Mallat, S., Zhong, S. Characterization of signals form multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(7):710~732.
  • 10[10]Cox, J., Killian, J., Leighton, T., et al. Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing, 1997,6(12):1673~1687.

共引文献216

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部