期刊文献+

基于散度差准则的隐空间特征抽取方法

Feature Extraction Method Based on Scatter Difference Criterion in Hidden Space
下载PDF
导出
摘要 本文提出了一种新的非线性特征抽取方法——基于散度差准则的隐空间特征抽取方法。该方法的主要思想就是首先利用一核函数将原始输入空间非线性变换到隐空间,然后,在该隐空间中,利用类间离散度与类内离散度之差作为鉴别准则进行特征抽取。与现有的核特征抽取方法不同,该方法不需要核函数满足Mercer定理,从而增加了核函数的选择范围。更为重要的是,由于采用了散度差作为鉴别准则,从根本上避免了传统的Fisher线性鉴别分析所遇到的小样本问题。在ORL人脸数据库和AR标准人脸库上的试验结果验证了本文方法的有效性。 In this paper, a novel feature extraction method based on scatter difference criterion in hidden space is developed. Its main idea is that the original input space is first mapped into a hidden space through a prespecified kernel function, in which space the feature extraction is conducted using the difference of between-class scatter and withinclass scatter as the discriminant criterion. Different from the existing kernel feature extraction methods, the kernel function used in the proposed one is not required to satisfy Mercer's theorem so that they can be chosen from a wide range. It is more important that due to adoption of the scatter difference as the discriminant criterion for feature extraction, the proposed method essentially avoids the small size samples problem usually occured in the traditional Fisher linear discriminant analysis. Finally, extensive experiments are performed on ORL face database and AR face database. The experimental results indicate that the proposed method outperforms the traditional scatter difference diseriminant analysis in recognition performance.
出处 《计算机科学》 CSCD 北大核心 2006年第12期174-176,199,共4页 Computer Science
基金 国家自然科学基金(60472060) 江苏省博士后科研资助计划项目 江苏省高校自然科学基金(05KJB520152)的资助。
关键词 隐空间 散度差鉴别准则 特征抽取 人脸识别 Hidden space,Scatter difference discrminant criterion, Feature extraction, Face recognition
  • 相关文献

参考文献8

  • 1Fisher R A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1936,7: 178-188
  • 2Belhumeur P N, et al. Eigenfaces vs Fisherfaces: Recognition using class specific linear projections. IEEE Trans Pattern Anal Machine Intell, 1997, 19(7): 711-720
  • 3Hong Z Q,Yang J Y,et al. Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognition, 1991,24(4): 317-324
  • 4Liu K, Yang J Y, et al. An effigient algorithm for Foley-sammon optimal set of discriminant vectors by algebranic method. International Journal of Pattern Recognition and Artificial Intelligence,1992,6(5):817-829
  • 5金忠,杨静宇,陆建峰.一种具有统计不相关性的最佳鉴别矢量集[J].计算机学报,1999,22(10):1105-1108. 被引量:51
  • 6Yang J, Zhang D, et al. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Machine Intell, 2004, 26(1):131-137
  • 7Yang J, Yang J Y. From image vector to matrix: a straightforward image projectionIMPCA vs PCA. Pattern Recognition,2002,35(9):1997-1999
  • 8宋枫溪,程科,杨静宇,刘树海.最大散度差和大间距线性投影与支持向量机[J].自动化学报,2004,30(6):890-896. 被引量:58

二级参考文献6

  • 1Fisher R A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1936, 7: 179-188
  • 2Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
  • 3Foley D H, Sammon J W. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975,24(3): 281-289
  • 4Jin Z, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001, 34(7): 1405-1416
  • 5Bian Zhaoqi, Zhang Xuegong. Pattern Recognition. Beijing: Qinghua University Press, 2000 (in Chinese)
  • 6Hsu C, Lin C, A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transaction on Neural Networks, 2002, 13(2): 415-425

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部