期刊文献+

Computing Ground State Solution of Bose-Einstein Condensates Trapped in One-Dimensional Harmonic Potential

Computing Ground State Solution of Bose-Einstein Condensates Trapped in One-Dimensional Harmonic Potential
下载PDF
导出
摘要 For Bose-Einstein condensates trapped in a harmonic potential well, we present numerical results from solving the tlme-dependent nonlinear Schrolinger equation based on the Crank-Nicolson method. With this method we are able to find the ground state wave function and energy by evolving the trial initial wave function in real and imaginary time spaces, respectively. In real time space, the results are in agreement with [Phys. Rev. A 51 (1995) 4704], but the trial wave function is restricted in a very small range. On the contrary, in imaginary time space, the trial wave function can be chosen widely, moreover, the results are stable.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第5X期873-878,共6页 理论物理通讯(英文版)
基金 The project supported by the Youth Natural Science Foundation of Zhengzhou Institute of Aeronautical Industry Management under Grant No. Q05K067
关键词 Bose-Einstein condensates nonlinear Schrodinger equation Crank-Nicolson method 玻色子-爱因斯坦冷凝物 非线性Schrodinger方程 Crank-Nicolson法 势阱
  • 相关文献

二级参考文献8

  • 1E.G. Fan, Phys. Lett. A 277 (2000) 212.
  • 2B. Li, Y. Chen, and H.Q. Zhang, Chaos, Solitons & Fra-tals 15 (2003) 647.
  • 3Z.S. Lu and H.Q. Zhang, Chaos, Solitons & Fractals 17(2003) 669.
  • 4F.D. Xie and Z.T. Yuan, Commun. Theor. Phys., (Beijing, China) 4a (2005) 39.
  • 5S.K. Liu, Z.T. Fu, S.D. Liu, and Q. Zhao, Phys. Lett. A289 (2001) 69.
  • 6Z.Y. Yan and H.Q. Zhang, Phys. Lett. A 285 (2001) 355.
  • 7C.P. Liu and X.P. Liu, Phys. Lett. A 303 (2002) 197.
  • 8Z.T. Fu,S.D. Liu, and S.K. Liu, Commun. Theor. Phys.(Seijing, China) 39 (2003) 531.

共引文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部