期刊文献+

一种基于神经网络和多小波的水印新算法 被引量:3

A Novel Watermarking Algorithm Based on Neural Network and Multiwavelet
原文传递
导出
摘要 文章提出一种基于平衡多小波和模糊CMAC神经网络的数字水印新算法,充分利用了平衡正交多小波的正交性和对称性,不需要进行预滤波处理;而结合SISO模糊CMAC对存贮器和训练数据需求量少等优点,有效地减小了运算量。实验结果表明,该水印算法具有较强的鲁棒性和透明性。 In this paper a novel watermarking algorithm based on balanced multiwavelet transform and fuzzy CMAC neural network is proposed. In this scheme, the original image is firstly decomposed by multiwavelet transformation and the relation among subblocks is learned by FCMAC neural network. Finally a watermark is embedded into the multiwavelet domain by adjusting the relation among these subblocks. The multiwavelet transform achieves simultaneous orthogonality and symmetry without requiring any input prefiltering. Therefore, considerable reduction in computa- tional complexity is possible. The SISO fuzzy CMAC neural network can lower the demand of memory and training data, but it still maintains the same performance. The experimental results show the watermark robustness and imperceptibility of this method.
出处 《信息安全与通信保密》 2006年第12期103-104,107,共3页 Information Security and Communications Privacy
基金 国家自然科学基金30470459资助
关键词 数字水印 平衡正交多小波 模糊小脑神经网络 digital watermark balanced multiwavetets FCMAC
  • 相关文献

参考文献1

二级参考文献7

共引文献9

同被引文献16

  • 1廖竣锴.基于神经网络的异常检测[J].信息安全与通信保密,2005,27(10):85-87. 被引量:3
  • 2刘永,张立毅.BP和RBF神经网络的实现及其性能比较[J].电子测量技术,2007,30(4):77-80. 被引量:56
  • 3LI Xue-fang,WANG Rang-ding.A Video Watermarking Scheme Based on 3D-DWT and Neural Network,Ninth IEEE International Symposium on Multimedia 2007-Workshop[J],2007(29):110-114.
  • 4Xuefang Li, Rangding Wang. A Video Watermarking Scheme based on 3D-DWT and Neural Network. Ninth IEEE International Symposium on Multimedia 2007-Workshop[J]. 2007 (29):110-114.
  • 5Liao X.Yu J.Robust Stability for Interval Hopfield Neural Networks with Time Delay[J].IEEE Trans.Neural Networks,1998(09):1042-1045.
  • 6Chen A,Cao J,Huang L.Global Robust Stability of Interval Cellular Neural Networks with Time-varying Delays[J].Chaos,Solitons and Fractals,2005(23):787-799.
  • 7Ozcan N,Arik S.Global Robust Stability Analysis of Neural Networks with Multiple Time Delays[J].IEEE Trans.Circuits Syst.Ⅰ,Reg.Papers,2006,53(01):166-176.
  • 8Singh V.Global Robust Stability of Delayed Neural Networks:Estimating Upper Limit of Norm of Delayed Connection Weight Matrix[J].Chaos,Solitons and Fractals,2007(32):259-263.
  • 9Yu W,Yan L.Global Robust Stability of Neural Networks with Time Varying Delays[J].Journal of Computational and Applied Mathematics,2007,206(02):679-687.
  • 10Shen T,Zhang Y.Improved Global Robust Stability Criteria for Delayed Neural Networks[J].IEEE Trans.Circuits Syst.Ⅱ:Exp.Briefs,2007,54(08):715-719.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部