期刊文献+

求解鞍点问题的一般加速超松弛方法 被引量:10

GENERALIZED AOR METHOD FOR AUGMENTED SYSTEMS
原文传递
导出
摘要 针对大型稀疏鞍点问题给出了一种含有待定参数的新迭代解法,将其称之为一般加速松弛方法,简记为GAOR方法.当参数α=时,新迭代方法是变成由Golub等人给出的SOR-Like方法.该迭代法的构成是基于对系数矩阵进行的一种分裂.迭代法需要选择一个预处理矩阵和待定参数,通过适当选取预处理矩阵和待定参数,新迭代法是收敛的,并且以定理的形式给出了新迭代方法的迭代矩阵的特征值和参数之间的基本等式,从而也导出了迭代法收敛的充分和必要条件.理论结果表明新方法更具有广泛性,并且适当的选择参数可以使新方法较SOR-Like方法具有更快的收敛速度.在文中的最后给出了迭代法的数值试验结果. In this article, the new method with the uncertain parameter is considered for solving the augmented system. The new method is called the Generalized AOR method (GAOR). The Generalized AOR method becomes SOR-like method given by Golub et al. when a = 0. The new method is based on the splitting form of the coefficient matrix. The iterative method need choose a precondition matrix and the uncertain parameter . The functional equation between the parameters and the eigenvalues of the iteration matrix of the Generalized AOR method is given. Therefore, the necessary and sufficient condition for the convergence of the Generalized AOR method is derived by giving the restrictions imposed on the parameters. Finally, numerical computation based on a particular linear system is given, which clearly show the Generalized AOR method outperforms the SOR-like method.
机构地区 东北大学理学院
出处 《数值计算与计算机应用》 CSCD 2006年第4期241-248,共8页 Journal on Numerical Methods and Computer Applications
基金 辽宁省自然科学基金(20022021).
关键词 鞍点问题 迭代法 对称正定矩阵 SOR-Like方法 GAOR方法 augmented system, the iterative method, symmetric and positive definite(SPD), SOR-like method, GAOR method
  • 相关文献

参考文献12

  • 1H Elman and G H Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems,SIAM J Numer. Anal., 31(1994) 1645-1661.
  • 2G H Golub, X Wu, and Jin-Yun Yuan, SOR-like methods for augmented systems, BIT v41(2001)71-85.
  • 3A Bjock, Numerical stability of methods for solving augmented systems, in Proceedings of Recent Developments in Optimization Theory and Nonlinear Analysis, Jerusalem, 1995, Y Censor and S Reich, eds, Contemp. Math., 204, Amer. Math. Soc., Providence, RI, 1997, 51-60.
  • 4B. Fischer, A Ramage, D J Silvester and A J Wathen, Minimum residual methods for augmented systems, BIT, 38(1998) 527-543.
  • 5S Wright, Stability of augmented system factorization in interior-point methods, SIAM J Matrix Anal. Appl., 18(1997) 191-222.
  • 6D.M. Young, Iterative solutions of large linear systems, Academic Press, NY, 1971.
  • 7A Hadjidimos, Accelerated Overrelaxation Method, Math. Comp, 32 (1978) 149-157.
  • 8Changjun Li and D J Evans, A new iterative method for large sparse saddle point problem,International Journal of Computer mathematics v74(2000) 529-536.
  • 9Changjun Li, Baoja Li and David J Evans, Optimum accelerated parameter for the GSOR method,Neural, Parallel & Scientific Computations v7(1999) 453-462.
  • 10Changjun Li, Baoja Li and David J Evans, A generalized successive overrelaxation method for least squares problems, BIT v38 (1998) 347-355.

同被引文献62

  • 1Tian Hongjiong & Kuang Jiaoxun (Department of Mathematics, Shanghai Normal University, Shanghai 200234, China).The θ-Methods in Numerical Solution of Systems of Differential Equations with Two Delay Terms[J].Journal of Systems Engineering and Electronics,1994,5(3):32-40. 被引量:2
  • 2YOUNG D M, Iterative Solution of Large Linear Systems[M]. Academic, New York, 1971.
  • 3ELMAN H C, GOLUB G H. Inexct and preconditioned Uzawa alogorithims for saddle point problems[J]. SIAM J Numer Anal, 1994, 31: 1645-1661.
  • 4GOLUB G H. WU X, J1N-YUN YUAN. SOR-like methods for augmented system[M]. BIT 41, 2001: 71-85.
  • 5GOLUB G H,WU X,JIN-YUN YUAN.SOR-like methods for augmented systems[J].BIT,2001(1):71-85.
  • 6ZHONG-ZHI BAI,ZENG-QI WANG.On generalized successive overrelaxation methods for augmented linear systems[J].Numerische Mathematik,2005,102:1-38.
  • 7CHANG-JUN LI,EVANS D J.A new iterative method for large sparse saddle point problem[J].International Journal of computer Mathmatics,2000,74:529-536.
  • 8EVANS D J,MISSIRLIS N M.The preconditioned simultaneous displacement mothod (PSD method) for elliptic difference equations[J].Math Comp Simulation,1980,XXII:256-263.
  • 9YOUNG D M.Iterative solution of large linear system[M].New York London:Academic press,1971.
  • 10Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems[J]. Acta Numerica, 2005, 14: 1-137.

引证文献10

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部