期刊文献+

流体-结构相互作用下用微分求积法求弹性板上的动水压力场 被引量:2

Numerical simulation of hydrodynamic pressure on vibrating plates through differential quadrature method with fluid-structure interaction
下载PDF
导出
摘要 采用微分求积法(DQ)在流体-结构相互作用(FSI)框架下求解原变量形式的Navier-Stokes(N-S)方程和板的弯曲振动方程,获取作用在弹性板上的动水压力场。分析对象是4块矩形板组成的箱型流道,其中两块为弹性薄板,另外两块为刚性板。为比较FSI对动水压力场的影响,数值结果给出了1.5 m×0.5 m×0.2 m流道、来流雷诺数分别为7 000和10 000、相应DQ网格为25×25×25和29×29×29考虑FSI与否的压力分布。数值计算结果表明,所建立的考虑FSI的DQ法数值求解原变量形式N-S方程和弹性板振动方程,获取弹性板上的动水压力场是可行的,FSI效应对动水压力场的影响是明显的。 The differential quadrature (DQ) method is firstly applied to solve three-dimensional incompressible Navier-Stokes equations in primitive variable form with the fluid-structure interaction (FSI). The flow passage used in the present paper consists of four rectangular plates, two of which are elastic and others rigid, and the elastic plates are vibrating while the fluid are flowing. To compare the influences of FSI on the pressure fields, the size of the flow passage is designated to 1.5 m × 0.5 m × 0.2 m as a working example. The DQ mesh sizes of 25 × 25 × 25 and 29 × 29 × 29 were used for Reynolds numbers of 7000 and 10 000, with and without FSI, respectively. The numerical results show that the developed DQ method with FSI is a suitable tool to analyze hydrodynamic pressure on a vibrating plate, and the effects of FSI on the flow fields are significant.
出处 《水科学进展》 EI CAS CSCD 北大核心 2006年第6期767-773,共7页 Advances in Water Science
基金 国家自然科学基金重大研究计划资助项目(90210005)~~
关键词 NAVIER-STOKES方程 动水压力 流体-结构相互作用 微分求积法 Navier-Stokes equations hydrodynamic pressure fluid-structure interaction DQ method
  • 相关文献

参考文献11

  • 1Weaver D S,Ziada S,Au-Yang M K,et al.Flow-induced vibration in power and process plants components-Progress and prospects[J].ASME Journal of Pressure Vessel Technology,2000,122:339-348.
  • 2Zhang Lixiang,Tijsseling A S,Vardy A E.FSI Analysis of Liquid-filled Pipes[J].Journal of Sound and Vibration,1999,224:69-99.
  • 3K Yang,Li Q S,Zhang Lixiang.Longitudinal vibration analysis of multi-span liquid-filled pipelines with rigid constraints[J].Journal of Sound and Vibration,2004,273(1):125-147.
  • 4Li Q S,K Yang,Zhang Lixiang.Analytical solution for fluid-structure interaction in liquid-filled pipes subjected to impact-induced water hammer[J].ASCE Journal of Engineering Mechanics,2003,129(12):1408-1417.
  • 5Bellman R E,Kashef B G,Casti J.Differential quadrature:a technique for the rapid solution of nonlinear partial differential equations[J].Journal of Computational Physics,1972,10:40-52.
  • 6Shu C.Differential quadrature and its application in engineering[M].London:Springer,2000.
  • 7Shu C,Wee K H A.Numerical simulation of natural convection in a square cavity by SIMPLE-GDQ method[J].Computers and Fluids,2001,31:209-226.
  • 8Shu C,Wang L,Chew Y T.Numerical computation of three-dimensional incompressible Navier-Stokes equations in primitive variable form by DQ method[J].International Journal for Numerical Methods in Fluids,2003,43:345-368.
  • 9Shu C,Richards B E.Application of generalized differential quadruature to solve two-dimensional incompressible Navier-Stokes equations[J].International Journal for Numerical Methods in Fluids,1992,15:791-798.
  • 10Choi S T,Chou Y T.Vibration analysis of elastically supported turbomachinery blades by the modified differential quadrature method[J].Journal of Sound and Vibration,2001,240(5):937-953.

同被引文献24

  • 1李永欣,李光永,邱象玉,王建东.迷宫滴头水力特性的计算流体动力学模拟[J].农业工程学报,2005,21(3):12-16. 被引量:61
  • 2魏正英,赵万华,唐一平,卢秉恒,张鸣远.滴灌灌水器迷宫流道主航道抗堵设计方法研究[J].农业工程学报,2005,21(6):1-7. 被引量:78
  • 3钱忠东,黄社华.四种湍流模型对空化流动模拟的比较[J].水科学进展,2006,17(2):203-208. 被引量:26
  • 4邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38. 被引量:238
  • 5Kreij de C, Burg van der A M M, Runia W T. Drip irrigation emitter clogging in Dutch greenhouse as affected by methane and organic acids[J]. Agricultural Water Management, 2003,60 : 73 - 85.
  • 6Arati Nanda Pati. Fluid-structure interaction for a pressure driven flow[J]. Mathematical and Computer Modelling, 2008,47(1 -2) :1 -26.
  • 7GURCHENKOV A A.The unsteady motion of a viscous fluid between rotating parallel walls[J] .Journal of Applied Mathematics and Mechanics, 2002, 66(2) : 239 - 243.
  • 8MISRA J C, PAL B, PAL A, et al. Oscillatory entry flow in a plane channel with pulsating walls[J]. International Journal of Non-Linear Mechanics, 2001, 36(5): 731- 741.
  • 9KHALED A R A, VAFAI K. The effect of the sllp condition on Stokes and Couette flows due to an oscillating wall: exact solutions[J]. International Journal of Non-Linear Mechanics, 2004, 39(5): 795-809.
  • 10CHOI H, MOIN P, KIM I. Active turbulence control for drag reduction in wall-bounded flows[J]. Journal of Fluid Mechanics, 1994, 262: 75-110.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部