期刊文献+

一种基于声纳信息的移动机器人地图创建方法 被引量:1

A sonar-based map building approach for mobile robot
下载PDF
导出
摘要 未知环境中移动机器人地图创建是自主移动机器人一项重要的基本功能。本文提出了一种新的基于声纳传感器信息进行栅格地图创建方法。将Bayes法则应用于栅格概率估计和声纳信息处理过程中,有效的克服了声纳传感器的不确定性,实现了从局部地图到全局地图的更新。实验验证了该方法的可行性和有效性。 Building an accurate map in an unknown environment is an important element for an autonomous robot. In this paper, a new map building method using sonar data is presented. Bayes' rule is utilized to estimate the probability that an occupancy grid being occupied and to deal with sonar information which highly overcomes the uncertainty. Experimental results indicate the feasibility and validity.
出处 《制造业自动化》 北大核心 2006年第11期33-35,65,共4页 Manufacturing Automation
关键词 移动机器人 地图创建 Bayes法则 栅格地图 mobile robot map building Bayes'rules grid map
  • 相关文献

参考文献9

  • 1SCHULTZ A C,ADAMS W.Continuous localization U.sing evidence grids[J].Proceedings of the 1998 IEEE International Conference on Robotics and Automation.1998,4:2833-2839.
  • 2AYACHE N,FAUGERAS O D.Maintaining representations of the environment of a mobile robot[J].IEEE Trans Robot Automat,1989,5 (6):804-819.
  • 3KYUOERS B J.The spatial semantic hierarchy[J].Artificial Intelligence,2000,119:91-233.
  • 4MORAVEC H P,ELFES A.High resolution maps from wide angle sonar[A].In Proc.IEEE Int.Conf.Robotics and Automation[C].1985.116-121.
  • 5YAMAUCHI B.A frontier-based approach for autonomous exploration[A].In Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation[C].1997.146-151.
  • 6Sebastian Thrun:Learning occupancy grid maps with forward sensor models[J].Autonomous Robots,2003,15(2):111-127.
  • 7KARAN M G,Monte Carlo localization for robots using dynamically expanding occupancy grids[J].Computer science,2005:10-14.
  • 8罗荣华,洪炳镕.基于信息融合的同时定位与地图创建研究[J].哈尔滨工业大学学报,2004,36(5):566-569. 被引量:17
  • 9王卫华,陈卫东,席裕庚.移动机器人地图创建中的不确定传感信息处理[J].自动化学报,2003,29(2):267-274. 被引量:27

二级参考文献11

  • 1SMITH R, SELF M, CHESSEMAN P. Estimating uncertain spatial relationships in robotics [ J ]. Uncertainty in Artificial Intelligence, 1988, 2: 435 -461.
  • 2DISSANAYAKE GAMINI M W M, NEWMAN PAUL. A solution to the simultaneous localization and map building (SLAM) problem [ J ]. IEEE Trans. Robotic. Automat. , 2001, 17(3): 229-241.
  • 3GUIVANT J, NEBOT E. Optimization of the simultaneous localization and map building algorithm for real time implementation [ J ]. IEEE Trans. Robotic. Automat. ,2001, 17(3): 242 -257.
  • 4CASTELLANOS J A, MONTIEL J M M, NEIRA J, et al. The SPmap: A probabilistic framework for simultaneous localization and map building [ J ]. IEEE Trans.Robot. Automat. , 1999, 15 (5): 948 - 952.
  • 5DASVISON J D, MURRAY W D. Simultaneous Localization and map- building using active vision[ J]. IEEE Trans. Pattern Analysis Machine Intelligence, 2002, 24(7): 865 - 880.
  • 6CASTELLANOS J A, NEIRA J, TARDOS J D. Multisensor fusion for simultaneous localization and mapping[J]. IEEE Trans. Robot. Automat., 2001, 17(6):908 -914.
  • 7WIJK O. CHRISTENSEN H I. Triangulation based fusion of sonar data with application in robot pose tracking[J]. IEEE Trans. Robot. Automat., 2001,6(6):740- 752.
  • 8TARDOS J D, NEIRA J. Robust Mapping and Localization in Indoor Environments using Sonar Data [ J/OL]. http://www. cps. unizar. es/- jdtardos/publications. html.
  • 9王卫华,陈卫东,席裕庚.基于不确定信息的移动机器人地图创建研究进展[J].机器人,2001,23(6):563-568. 被引量:28
  • 10洪炳镕,罗荣华.一种鲁棒移动机器人自主定位方法[J].哈尔滨工业大学学报,2003,35(9):1047-1049. 被引量:10

共引文献41

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部