期刊文献+

Ⅰ型锗基笼合物Ba_8Ga_(16-x)Sb_xGe_(30)的合成及热电性能 被引量:1

Synthesis and thermoelectric properties of Sb-doped type-Ⅰ Ge clathrates Ba_8Ga_(16-x)Sb_xGe_(30)
原文传递
导出
摘要 用高温熔融结合放电等离子烧结(SPS)方法合成了Sb掺杂的单相n型Ba8Ga16-xSbxGe30化合物,探索了Sb对Ga的取代对其热电性能的影响规律.研究结果表明:随着Sb取代分数x的增加,Seebeck系数逐渐降低,Seebeck系数峰值对应的温度向低温方向偏移.电导率随着x的增加先增大后减小,当x=2时达到最大值.Sb取代Ga后对化合物的热性能有较大影响,其热导率和晶格热导率都有不同程度的降低.在所有n型Ba8Ga16-xSbxGe30化合物中,Ba8Ga14Sb2Ge30化合物的ZT值最大,在950K左右其最大ZT值达1·1. The single-phase Sb-doped n-type Ba8 Ga16-x Sbx Ge30 compounds were synthesized by melting reaction combined with spark plasma sintering. Influences of substituting Sb for Ga on the thermoelectric properties of the compounds were investigated. The results indicate that with the increase of Sb substitution fraction the Seebeck coefficient is decreased gradually, and the temperature which corresponds to the peak value of Seebeck coefficient moves to low-temperature. The electrical conductivity of the compounds increases at first and then decreases with the increase of x ; when x = 2, it reaches maximum. Substituting Sb for Ga has a great influence on the thermal properties of the compounds. Both the thermal conductivity and lattice thermal conductivity decrease in various degrees. Of all n-type Ba8Ga16-x Sbx Ge30 compounds, the compound Ba8Ga14Sb2Ge30 has the greatest ZT value, the maximal value of which reaches 1.1 at about 950 K.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2006年第12期6630-6636,共7页 Acta Physica Sinica
基金 国家自然科学基金重大国际合作项目(批准号:50310353) 国家自然科学基金(批准号:50372049)资助的课题.~~
关键词 热电性能 笼合物 框架取代 合成 thermoelectric properties, clathrate compounds, framework substitution, synthesis
  • 相关文献

参考文献28

二级参考文献24

  • 1罗派峰,唐新峰,李涵,刘桃香.Ba和Ce两种原子复合填充Ba_mCe_nFeCo_3Sb_(12)化合物的合成及热电性能[J].物理学报,2004,53(9):3234-3238. 被引量:11
  • 2Sales B C, Mandrus D and Williams R K 1996 Science 272 1325
  • 3Sales B C, Mandrus D, Chakoumakos B C, Keppens V and Thomspon J R 1997 Phys. Rev. B 56 15081
  • 4Morelli D T and Meisner G P 1995 J. Appl. Phys. 77 3777
  • 5Nolas G S, Slack G A, Morelli D T and Ehrlich A C 1996 J. Appl. Phys. 79 4002
  • 6Sales B C, Chakoumakos B C and Mandrus D 1999 Phys. Rev. B 61 2475
  • 7Nolas G S, Cohn J L and Slack G A 1998 Phys. Rev. B 58 164
  • 8Maple M B, Dilley N R, Gajewski D A, Bauer E D, Freeman E J, Chau R, Mandrus D and Sales B C 1999 Phys. Rev. B 256 8
  • 9Caillat T and Fleurial J P 1997 16th Inter. Conf. on Thermoelectric (IEEE , Piscataway, U.S.A.) p.446-453
  • 10Meisner G P, Morelli D T, Hu S, Yang J and Uher C 1998 Phys. Rev. B 80 3551

共引文献37

同被引文献26

  • 1Nolas G S 1999 Mater. Res. Soc. Symp. Proc. 545 435
  • 2Slack G A 1995 CRC Handbook of Thermoelectrics (Boca Raton: CRC Press) p407
  • 3Nolas G S, Cohn J L, Slack G A, Schujman S B 1998 Appl. Phys. Lett. 73 178
  • 4Chakoumakos B C, Sales B C, Mandrus D G, Nolas G S 2000 J. Alloys Compd. 296 80
  • 5Cohn J L, Nolas G S, Fessatidis V, Metcalf T H, Slack G A 1999 Phys. Rev. Lett. 82 779
  • 6Gatti C, Bertini L, Blake N P, Iversen B B 2003 Chem. Eur. J. 9 4556
  • 7Kuznetzov V L, Kuznetsova L A, Kaliazin A E, Rowe D M 2000 J. Appl. Phys. 87 7871
  • 8Saramat A, Svensson G, Palmqvist A E C 2006 J. Appl. Phys. 99 023708
  • 9Kim J H, Norihiko L, Okamoto K K, Katsushi T, Haruyuki I 2006 Acta Materialia 54 2057
  • 10Bentien A, Pacheco V, Paschen S, Grin Yu, Steglich F, 2005 Phys. Rev. B 71 165206

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部