期刊文献+

基于双目计算机视觉的自适应识别算法及其监控应用 被引量:1

An Adaptive Recognition Algorithm Based on Two-eye Computer Vision and Its Application in Monitoring
下载PDF
导出
摘要 双目计算机视觉是利用仿生学原理,通过标定后的双摄像头来得到同步曝光图像,然后计算获取的2维图像像素点的第3维深度信息。为了对不同环境场景进行监控提出了一种新的基于双目计算机视觉的自适应识别算法。该算法首先利用像素点的深度信息对场景进行识别判断,然后采用统计的方法为场景建模,并通过时间滤波克服光照渐变,以及通过深度算法特性克服光照突变。与单摄像头监控系统相比,利用该算法实现的视频监控原型系统,可应用于更多场合,并利用深度信息设置报警级别,来降低误检率。 Two-eye computer vision algorithm uses the principle of Bionics. It gets the depth information of each pixel by two demarcated cameras. A new adaptive recognition algorithm based on two-eyes computer vision is presented in this paper. This algorithm makes use of the depth information of each pixel. Then it adopts the statistics method to model the scene and overcomes the gradual light change using time filter. It can also overcome the sudden light change with the characteristic of the depth algorithm. The video monitor antitype system using our algorithm can be set at more places than one camera system. It can set the alarm level according to the depth. Information, which can reduce the mistake ratio.
作者 丁谨 王新
出处 《中国图象图形学报》 CSCD 北大核心 2006年第11期1708-1711,共4页 Journal of Image and Graphics
基金 上海市重点攻关项目(055115009) 上海市重大科技攻关项目(04DZ15021-5A) 上海市智能信息处理重点实验室开放基金项目(IIPL-04-004)
关键词 双目计算机视觉 深度信息 自适应 光照变化 视频监控 two-eye computer vision, depth information, adaptive, light change, video monitoring
  • 相关文献

参考文献9

  • 1Ude A,Riley M.Prediction of body configurations and appearance for model-based estimation of articulated human motions[A].In:IEEE SMC'99 Conference Proceeding[C],Tokyo,Japan,1999:687 ~ 691.
  • 2Ricquebourg Y,Bouthemy P.Real-time tracking of moving persons by exploiting spatio-temppral image slices[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (8):797 ~808.
  • 3Tsap L V,Goldof D B,Sarkar S.Nonrigid motion analysis based on dynamic refinement of finite element modelsp[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (5):526 ~ 543.
  • 4Haritaoglu I,Harwood D,Davis L.A real time system for detecting and tracking people[A].In:Third International Conference on Automatic Face and Gesture[C],Nara,Japan,April 1998.
  • 5Wren C,Azarbayejani A,Darrell T.Real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780 ~785.
  • 6Ridder C,Munkelt O,Kirchner H.Adaptive background estimation and foreground detection using Kalman filtering[A].In:Proceedings International Conference.Recent Advances in Mechatronics,ICRAM'95,Istanbul,Turkey,1995:193 ~ 199.
  • 7Fujiyoshi H,Lipton A J.Real-time human motion analysis by image skeletonization[A].In:Proceedings of the Workshop on Application of Computer Vision,Freiburg,Germany,October 1998.
  • 8Sebastien Roy,Ingemar J Cox.A maximum-flow formulation of the n-camera stereo correspondence problem[A].In:International Conference on Computer Vision (ICCV'98)[C],Bombay,India,January 1998:492 ~499.
  • 9Cox I J,Hingorani S,Maggs B M.A maximum likelihood stereo algorithm[J].Computer Vision and Image Understanding,1996,63(3):542 ~567.

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部