期刊文献+

动态独立分量分析算法及其应用研究 被引量:2

Study on dynamic independent component analysis and its application
下载PDF
导出
摘要 对基于非高斯性极大ICA方法的动态实现及其应用进行了研究。介绍了基于峭度极大ICA算法原理,然后将其改造成一种能进行动态独立分量提取的ICA算法。对动态ICA算法的收敛性和盲源分离效果进行了分析研究,并将该算法应用于脑电信号的消噪。结果表明,该算法具有较好的收敛性能和盲源分离效果。 In this paper, the dynamic implementation of independent component analysis (ICA) by maximization of nongaussianity and its application is studied. By introducing the online kurtosis estimation, the dynamic form of ICA algorithm using kurtosis is proposed. In our experiments, the separation performance of dynamic ICA algorithm is compared with those of its batch algorithm. Experiment results show that the dynamic ICA algorithm proposed on this paper has good performance in convergence and source separation.
作者 林春方 郭立
出处 《核电子学与探测技术》 CAS CSCD 北大核心 2006年第6期726-730,共5页 Nuclear Electronics & Detection Technology
关键词 独立分置分析 动态独立分量分析 非高斯极大 脑电信号 independent component analysis dynamic ICA maximization of nongaussianity EEG
  • 相关文献

参考文献9

  • 1Bell AJ.An information-maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995,7(4):1129.
  • 2Lee T-W.Independent Component Analysis--Theory and application[M].kluwer Academic,Boston,1998:27-64.
  • 3Delfosse N.Adaptive blind separation of independent sources:A deflation approach[J].Signal Processing,1995,45(1):59.
  • 4Amari SI.Super efficiency in blind source separation[J].IEEE Trans on Signal Processing,1999,47(3):936.
  • 5Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Trans on Neural Networks.1999; 10(3):626.
  • 6Scott Making:Independent Component Analysis of Electroencephalographic Data.Advances in Neural Information Processing Systems 8[M].MIT Press,Cambridge MA,1996:145.
  • 7杨福生,洪波,唐庆玉.独立分量分析及其在生物医学工程中的应用[J].国外医学(生物医学工程分册),2000,23(3):129-134. 被引量:58
  • 8吴小培,冯焕清,周荷琴,王涛.独立分量分析及其在脑电信号预处理中的应用[J].北京生物医学工程,2001,20(1):35-37. 被引量:32
  • 9Richard Vigario,et,al:Independent Component Approach to the Analysis of EEG and MEG Recording[J].IEEE Trans.on BME,2000,47(5):589.

二级参考文献13

  • 1John R.Hughes 马仁正译.临床实用脑电图学[M].北京:人民卫生出版社,1997.189.
  • 2刘琚.利用ICA方法对线形混叠的生物医学信号进行盲提取.99’中国生物医学电子学学术年会论文集[M].,.155-156.
  • 3Hyvarinen A.Fast and robust fixed-point algorithm for independent component analysis[].IEEE Transactions on Neural Networks.1999
  • 4Amari SI,Cichocki AC.Adaptive blind signal processing-Neural network approaches[].Proceedings of the IEEE.1998
  • 5Cardoso JF.Blind signal processing[].Proceedings of the IEEE.1998
  • 6Cardoso JF.Higher order contrasts for independent component analysis[].Neural Computation.1999
  • 7Amari SI.Natural gradient works effciently in learning[].Neural Computation.1998
  • 8Cichocki A,Unbehanen R,Rummert E.Robust learning algorithm for blind separation of sources[].Electronics Letters.1994
  • 9Lee TW,Amari SI,Cichocki AC.Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super -Gaussian sources[].Neural Computation.1999
  • 10Cardoso JF,Laheld BH.Equivariant adaptive source separation[].IEEE Transactions on Signal Processing.1996

共引文献77

同被引文献17

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部