期刊文献+

LexiT序方法的推广 被引量:1

Generalization of LexiT ordering method
下载PDF
导出
摘要 在最大运算量为2n的LexiT序和LexiS序的基础上,提出了新的LexiTN序和LexiSN序,这两种序保持了LexiT序和LexiS序的所有性质,且它们的最大运算量为2n-1.另外,基于广义平均算子与有序加权平均算子,提出了最大运算量为n的LexiH序与LexiF序,研究了其性质.将[0,1][n]上的LexiR序推广到[0,1]n上,讨论了其性质. Based on LexiT ordering and LexiS ordering, whose maximum calculations are 2^n , LexiTN ordering and LexiSN ordering are proposed in this paper, which preserve all the properties of LexiT ordering and LexiS ordering and whose maximum calculations are 2n - 1 . Based on two averaging aggregation operators, the generalized averaging operator and ordered weighted averaging operator, LexiH ordering and LexiF ordering are presented and their properties are studied. LexiR ordering on [0,1 ]^[ n] is generalized to [0,1]^n and their properties are discussed
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期17-20,共4页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10571112)
关键词 全序 T-模 s-模 广义平均算子 有序加权平均算子 LexiR序 total order t-norm s- norm generalized averaging operator ordered weighted averaging operator LexiR ordering
  • 相关文献

参考文献4

二级参考文献2

  • 1邹开其,模糊系统与专家系统,1989年,252页
  • 2Dubois D,New Results about Properties and Semantics of Fuzzy Set-Theoretic Operators,59页

共引文献4

同被引文献10

  • 1胡小建,杨善林,储伟,方芳.基于赋值代数的BN概率推理的局部计算模型[J].中国科学技术大学学报,2005,35(6):805-814. 被引量:2
  • 2Kohlas J. Information algebras: Generic structures for inference [M]. London: Springer-Verlag, 2003 : 1-94.
  • 3Kohlas J, Wilson N. Semiring induced valuation alge- bras: Exact and approximate local computation algo- rithms[J]. Artificial Intelligence, 2008, 172: 1360- 1399.
  • 4Bistarelli S, Montanari U, Rossi F. Semiring-based con- straint satisfaction and optimization [J]. Journal of the ACM, 1997, 44: 201-236.
  • 5Li Sanjiang, Ying Mingsheng. Soft constraint abstraction based on semiring homomorphism[J]. Theoretical Computer Science, 2008, 403 ..192-201.
  • 6Neumann G. Interpretational abstraction[J]. Computers Mathematics with Applications, 1991, 21 (8):65- 78.
  • 7Haenni R. Ordered valuation algebras: a generic frame- work for approximating inference [J].International Journal of Approximate Reasoning, 2004, 37:1-41.
  • 8Kohlas J. Uncertain information: Random variables in graded semi-lattices [J]. International Journal of Approximate Reasoning, 2007, 46: 17-34.
  • 9Schneuwly C. Computing in Valuation Algebras[D]. Fribourg: University of Fribourg, 2007.
  • 10Pouly M. A Generic Framework for Local Computation [D]. Fribourg.. University of Fribourg, 2008.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部