期刊文献+

关于第二类Bent基和线性基Bent序列的讨论

On the Second-Class Concatenating Bent Functions
原文传递
导出
摘要 C.M.A dam s和S.E.T avares在1990年曾猜测所有长为2n的Ben t序列都是由2n-2个长为4的Ben t序列或2n-2个长为4的仿射序列级联而成,并分别称这样的Ben t序列为Ben t基的和线性基的,1991年郭宝安和蔡长年通过构造一类非Ben t基非线性基的Ben t序列否定了该猜想.文章考虑用4个长为2n-2的(1,-1)-序列级联构造Ben t序列的问题,并称之为第二类级联,给出第二类线性基Ben t序列的类型以及级联序列为第二类Ben t基Ben t序列的一个充分条件. Concatenation has been being a very important method to construct Bent sequences (or functions). Adams & Tavares, Guo & Cai discussed the first-class Bent-based and linearbased Bent functions in early 1990's respectively. In this paper the Bent sequence concatenated by four Bent sequences or linear sequences of length 2^(n-2) was considered. A criterion for the second-class Bent-based Bent sequence was obtained, and the all forms of the second-class linear-based Bent sequences were found.
作者 王章雄
出处 《数学的实践与认识》 CSCD 北大核心 2006年第11期223-226,共4页 Mathematics in Practice and Theory
关键词 Bent序列 仿射序列 级联 Walsh-Hadamard矩阵 Bent sequence affine sequence concatenations Walsh-Hadamard matrix
  • 相关文献

参考文献5

  • 1Rothaus O S. On "bent" functions[J].J Combin Theory, 1976, 20(A): 300-305.
  • 2Yarlagadda R, Hershey J. Analysis and synthesis of bent sequences[J]. IEE, Proc (Part E), 1989, 136:112-123.
  • 3Adams C M, Tavares S E. Generating and counting binary bent sequences[J], IEEE, Trans On Inf Theory, 1990,36:1170-1173.
  • 4郭宝安,蔡长年.一类既非Bent基又非线性基的二元Bent序列的产生与计数[J].科学通报,1991,36(21):1668-1670. 被引量:8
  • 5Seberry J, Zhang X M. Highly nonlinear 0-1 balanced Boolean functions satisfying strict avalanche criterion[J].In Advances in Cryptology-AUSCRYPT'92, Vol. 718, Lecture Notes in Computer Science, Springer-Verlag, New York, 1993. 145-155.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部